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A B S T R A C T

Utilizing a novel database including nearly 2.2 billion booking records in China, we examine whether people
escape from pollution by traveling to “cleaner” places. Combining an instrumental variable approach with high-
dimensional fixed effects, we find a 50-unit increase in the AQI gap between a city pair leads to a 1.30% (1.33%)
increase in train and airline ticket bookings from the origin to the destination city departing within one day (2–7
days). In addition, the destination of such pollution-induced trips is more likely to be an intra-province city with
more tourist attractions. We also measure willingness to pay for clean air.

1. Introduction

In recent years, with air-pollution disclosure and publicity about the
importance of air quality, people have become more aware of air-
pollution issues (Barwick et al., 2024). To reduce the potential adverse
impacts of air pollution on health, productivity, and cognition (Chang
et al., 2019; Chen et al., 2013; Currie and Neidell, 2005; Ebenstein et al.,
2016; Fan et al., 2020; Guarnieri and Balmes, 2014; He et al., 2019;
Herrnstadt et al., 2021; Knittel et al., 2016; Landrigan et al., 2018;
Zhang et al., 2018), people may take different strategies to avoid
exposure to air pollution, such as staying indoors, purchasing air puri-
fiers, wearing masks, andmigrating to cities or countries with cleaner air
(Ito and Zhang, 2020; Khanna et al., 2021; Qin and Zhu, 2018; Sun et al.,
2019; Zhang and Mu, 2018). However, the avoidance behaviors
mentioned above fail in some cases. First, reducing indoor pollution by
air purifiers and avoiding outdoor activities may not be optimal solu-
tions in some cases—outdoor activities are essential for physical and
mental health (Jung et al., 2019; Triguero-Mas et al., 2017). In addition,

permanent migration, as another way to avoid air pollution, is a costly
decision (Freeman et al., 2019). Considering the high cost of permanent
migration and the relatively low frequency of extremely polluted days,
short-term trips can be a complementary option to avoid air pollution.

In this paper, we investigate how air pollution affects people’s travel
decisions in the short run. Utilizing a novel database from one of the
largest flight and train bookings providers in China, which includes
nearly 2.2 billion booking records with detailed individual and price
information from 2017 to 2019, we examine whether people book trips
to places with relatively cleaner air when air pollution in their resi-
dential places becomes severe. We construct the travel flow by train and
air between each city pair in the perspective of the reservation date of
the bookings and link the travel booking records with the air quality of
the origin and destination city on the reservation date. Based on this
data and the total trips of active users of the booking platform, we
measure the probability of individuals from an origin city choosing to
travel to a destination city on a given reservation date. We could match
the travel decisions to the air pollution on the exact location and date
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that the travel decisions are made.
To address the potential endogeneity of air quality affected by

human activities, we use upwind pollution based on wind directions and
wind speeds as an instrumental variable (IV) for the air-quality gap
between the origin and destination cities. In addition, we also control for
a rich set of fixed effects, including city-pair fixed effects (to control for
city-pair-level time-invariant unobservables), date fixed effects (to
control for a flexible time trend), and origin-year-month and
destination-year-month fixed effects to allow for a flexible time trend for
each origin and destination city-pair. Finally, we also control for
weather differences for each city-pair date that may affect city-pair
travel flows, including differences in wind speed, temperature, precip-
itation, sunshine, relative humidity, and atmospheric pressure.

Our analyses reveal four main findings. First, we find a 50-unit in-
crease in the Air Quality Index (AQI) gap between the origin city and the
destination city leads to a 1.30% and 1.33% significant increase in travel
bookings, departing within one day and two to seven days respectively.
Such effects are slightly larger for train ticket bookings than airline
ticket bookings. As a falsification test, we also show the AQI gap on the
reservation day has no impact on travel bookings that depart in more
than one week. In addition, the results are similar if we use an alter-
native measure of air pollution (PM2.5) or alternative standard errors
(one-way clustering at the city-pair level instead of two-way clustering
at the origin- and destination-city level). Additionally, the increased
train bookings on more polluted days are newly generated by air
pollution, whereas flight bookings are more likely to be the inter-
temporal shifting of trips planned previously.

Second, we investigate the heterogeneity of the results. We show the
effect is the largest for people ages 19–35 and becomes smaller in older
cohorts. In addition, we find the effect is largely driven by intra-province
travels instead of inter-province travels. In particular, the results show
that on polluted days, people buy train tickets to cleaner cities with
tourist attractions within the same province, which supports the
conjecture that the purpose of the trips reserved on polluted days is to
escape bad air quality. In addition, we find that the effects of AQI dif-
ference between a city pair are more prominent if the origin city is on
average a high-pollution city, and if the destination city is on average a
clean city.

Third, by exploiting the refund and cancellation of train and flight
bookings, we show train bookings on days with a higher AQI gap lead to
a higher probability of refund afterward, suggesting individuals are
more likely to regret their train bookings made on high-AQI-gap days.
The above results suggest that in addition to rational explanations for
our findings, such as pollution avoidance, behavioral factors may play a
role, such as projection bias.

Lastly, we measure willingness to pay (WTP) for clean air by running
a reduced-form analysis and utilizing the price information in our data.
Our OLS estimation suggests people leaving within one day (2–7 days)
are willing to pay 0.14 (0.31) yuan for a one-unit improvement of AQI.
However, OLS would underestimate the coefficient of AQI difference
and overestimate the coefficient of price in the reduced-form analysis.
By instrumenting for both price and AQI difference, we estimate that an
individual who departs within one day (2–7 days), on average, is willing
to pay 0.31 (0.10) yuan for a one-unit improvement of AQI. In other
words, an individual would be willing to pay 0.31 yuan for each unit
improvement in AQI within one day, and 0.10 yuan for each unit
improvement in AQI for avoiding pollution within 2–7 days. The IV
estimate is larger than the OLS estimate for trips leaving within one day
because air pollution difference suffers a more severe reverse-causality
problem for trips leaving within one day.1

Our paper contributes to the large literature investigating pollution-
avoidance behavior, including staying indoors (Guarnieri and Balmes,
2014; Sun et al., 2019), purchasing masks (Zhang and Mu, 2018), and
using air filters (Ito and Zhang, 2020), by showing a short-term trip is an
alternative option to avoid air pollution, and the air quality on the
reservation date does affect travel decisions. Our paper is most related to
a few recent works examining air pollution and travel flows (Barwick
et al., 2021; Chen et al., 2020, 2021).2 Our paper differs from those three
papers in the following aspects. First, instead of linking travel flows to
the air pollution on the travel dates, we are the first paper to link the
travel flows to the air pollution on the dates that the travel decisions are
made, that is, the reservation dates. Linking air pollution to the decision
date of travels is important because pollution-induced travels may not
take place on the same day. Second, our unique data from the largest
travel booking platform in China allow us to examine rich heterogene-
ities of the effects, including bookings by travel mode, by age cohort,
and by city characteristics. Third, our data on ticket refund and
cancellation allow us to investigate the existence of behavioral factors.
Lastly, the price information in our data allows us to directly measure
the WTP for clean air.

Our paper is also related to the literature estimating WTP for clean
air. Ito and Zhang (2020) find a household is willing to pay $1.34 (about
9 yuan) annually to remove 1 μg/m3 of PM10, and Chen et al. (2021) find
the average marginal WTP for AQI is around 6.4 yuan. Our estimates
(2.24–3.36 and 0.72–1.08 yuan)3 are smaller than the WTP estimated
from air purifier purchases by Ito and Zhang (2020) and much smaller
than the WTP estimated from long-termmigration by Bayer et al. (2009)
and Freeman et al. (2019), which is reasonable because air purifiers are
durable goods and migration is a long-term decision, whereas travel is
transient consumption. However, our estimate is likely to be a lower
bound because we do not consider other costs associated with such
short-term travels, such as accommodation and transportation costs in
the destination cities. Our work shows another dimension of measuring
WTP for air quality, which could complement the existing literature.

Our paper provides important implications for environmental pol-
icies. We show air pollution induces more travel, which, on the one
hand, brings health benefits to the travelers. However, on the other
hand, such pollution-induced travels offset the efforts in greenhouse gas
emission (GHG) reductions. According to our back-of-the-envelope
calculation, the increased travel due to air pollution leads to an
8,292.45-ton increase in CO2e annually, which means we need to plant
460,692–2,073,114 more trees to absorb these additional GHG
emissions.

The paper proceeds as follows. Section 2 describes the data used.
Section 3 introduces the empirical strategy including the construction of
the instrumental variable. Section 4 presents the estimation results.
Section 5 discusses the irrational aspect of this avoidance behavior,
intertemporal shifting, and the indirect cost of the pollution-induced
trips and Section 6 concludes.

1 We get similar estimates of WTP using PM2.5 as the measure of air pollution.
Specifically, an individual is willing to pay 0.31 yuan for each unit improve-
ment in PM2.5 for avoidance of 1-unit PM2.5 within one day, and 0.11 yuan for
each unit improvement in PM2.5 for avoiding pollution within 2–7 days.

2 Specifically, Chen et al. (2021) find the increase in the air-pollution dif-
ference between origin and destination cities increases short-term population
flow from origin to destination, using cell phone data and Beijing airport flights
data, respectively. Utilizing credit- and debit-card transaction data, Barwick
et al. (2021) show high-speed railways and air-travel networks facilitate
intercity travel, which acts as an effective means of adaption to air pollution.
3 To make the WTP comparable to those presented in Ito and Zhang (2020),

we make an annualization of our WTP estimates. An individual who departs
within one day (2–7 days), on average, is willing to pay 0.31 (0.10) yuan for a
one-unit improvement in AQI. In our data, an individual travels 3.61 times per
year, on average, which means an average individual leaving in zero to one
days (2–7 days) is willing to pay 1.12 (0.36) yuan annually for a one-unit
improvement in AQI. Therefore, the WTP of a household of two to three is
about 2.24–3.36 (0.72–1.08) yuan for one unit of AQI in a trip leaving in zero to
one days (2–7 days), respectively.

R. Dai et al.



Journal of Development Economics 171 (2024) 103340

3

2. Empirical background and data

2.1. Online transportation ticket bookings

With the rapid development of the internet, smartphones, and mo-
bile payments, online ticket booking has become more popular due to its
speed and cost-effectiveness. As of June 2019, the number of online
travel booking users in China reached 418million, accounting for 48.9%
of the total netizens.4 In 2018, people who booked train (airline) tickets
from the ticket bookings provider we acquire data from (hereinafter
referred to as “the institution” or “the ticket bookings provider”)
accounted for 16.2% (22.8%) of people who traveled by train (air)
throughout the year.5

In China, transportation tickets can be booked online in two primary
ways. One way is to book on official websites: airline tickets on the
airline’s websites such as China Southern Airlines, and train tickets on
China Railway Customer Service Center, known as 12306 China Rail-
way.6 The other way is to book using online travel agencies (OTA) such
as Ctrip, Fliggy, Qunar, and Meituan, where people can make reserva-
tions on their chosen flight, train, and bus routes through the mobile
platform, internet websites, and customer service centers and arrange
electronic payment.

2.2. Ticket bookings data

We utilize anonymized ticket booking data obtained from one of the
largest online travel agencies (OTA) in China, which is also one of the
largest travel service providers in the world. Its main services include
accommodation reservations, train and airline ticket bookings, and
packaged tours.

The online travel agency industry in China has enjoyed prosperous
growth in the past decade, mainly thanks to the popularity of smart-
phones. The total revenue reached 1.675 trillion USD in 2019 with an
online penetration rate of around 20%.7 The professional institution we
get data from was founded in 1999 as a pioneer in this industry and has
become a travel agency empire in the past 20 years. The institution
acquired the second-largest OTA at that time in 2015, and has since
controlled around half of the market. It acquired a large train-ticket-
booking platform in 2001 and became the largest third-party agency
in the online train-ticket-booking market. In particular, it is widely
preferred by individuals and corporations who want to book tickets
online, covering more than a half of the online travel ticket booking
market in 2018.8 Overall, the provider is regarded as the most powerful
OTA in China, and the data we use are the most representative data for
analyzing Chinese people’s online ticket-booking behavior.

We mainly take advantage of the data at the level of the departure
city, arrival city, reservation date, departure date, and travel mode,
which are aggregated from the original ticket-order data from the
institution. The original ticket-order data include all train and airline
ticket bookings from 2017 to 2019, with detailed information on

departure and arrival station, departure and arrival city, booking date,
departure date, flight (train) number, price, booking platform source,
and order status.9 Our sample records 0.25 billion passengers who ever
booked train tickets in 2017–2019, with 1.92 billion train trips in total,
and 0.12 billion passengers for airline tickets, with 0.65 billion airline
trips. In our following analysis, we focus on the completed orders, which
are paid and issued finally, to capture the actual travels. We also take
advantage of the orders that were canceled to explore possible behav-
ioral channels.10

An order may include multiple trips and passengers—simply aggre-
gating each trip may cause measurement problems when passengers
order connected-trip or round-trip tickets; for example, an individual
living in Beijing wants to book a round-trip ticket to Shanghai leaving in
two days and will stay in Shanghai for three days. Simply aggregating
these two trips will identify one individual leaving from Beijing to
Shanghai who books a ticket for departure in two days and another one
leaving from Shanghai to Beijing who books a ticket for departure in five
days. Therefore, to identify independent trips, we need to deal with the
round trips and connected trips. First, we identify the round-trip cases by
checking whether an individual has two trips booked on the same day
and for which the destination city of the first trip (ranked by the de-
parture time) is the same as the departure city of the second trip. We
delete the second trip of the round-trip tickets in our analysis because it
is not an independent travel behavior. Second, we identify the
connected-trip cases by checking whether two trips booked by an indi-
vidual on the same day are connected by a transfer city. We combine
these two trips and construct a new trip with the first trip’s departure
city as the original departure city and the second trip’s destination city
as the final-destination city. The price of this new trip is the sum of the
former two trips’ prices. Following the above method, we successfully
identify 18% as connected trips and 10% as round trips for trips by train;
for trips by air, 10% are connected trips and 24% are round trips.11

We group the completed orders by booking period and age cohort.
The booking period is defined as the difference between the departure
date and booking date, and the orders are separated into four groups:
0–1 days, 2–7 days, 8–30 days, and more than 30 days. The age cohort is
divided into 0–18, 19–35, 36–55, and 56–100 years old. In total, we
have 1.3 billion train tickets and 0.36 billion airline tickets in our
analysis. Price is the average price of all trips for each city-pair-
reservation-date cell.

We construct NumRatio, the propensity of daily average individuals
leaving from the origin city to a given destination city on a given date in
a specific booking period (leaving in 0–1, 2–7, 8–30, more than 31 days),
which is calculated as the ratio of the number of ticket bookings between
a city pair on a given date in a specific booking period and the average
number of daily trips (in 10,000) from the origin city that year.

2.3. Air pollution

The air-pollution data are from the China National Environmental
Monitoring Center (CNEMC).12 The data consist of AQI and multiple
pollutants including PM2.5, PM10, SO2, NO2, CO, and ozone for more4 Source: The 44th China Statistical Report on Internet Development from

China Internet Network Information Center (CNNIC). https://www.cnnic.net.
cn/hlwfzyj/hlwxzbg/hlwtjbg/201908/P020190830356787490958.pdf.
5 According to the 2018 Statistical Bulletin on the Development of the

Transportation Industry of China (https://xxgk.mot.gov.cn/jigou/zhghs/20190
4/t20190412_3186720.html), in 2018 (2019), civil aviation transported 537
(575) million passengers on domestic routes, and railway transported 3.375
(3.66) billion passengers throughout the year—546.8 (521.4) million people
booked train tickets and 122.7 (133.5) million booked domestic airline tickets
in our sample of the ticket bookings provider.
6 The website is http://www.12306.cn. 12306 China railway is an informa-

tion service website affiliated with China National Railway Group Co., Ltd.
7 https://www.qianzhan.com/analyst/detail/220/180627-5f0bf9d9.html.
8 This information comes from a report by the Qianzhan Research Institute,

https://www.sohu.com/a/399744531_99922905.

9 Order status reflects the final status of an order and is identified by two
dimensions: one is whether the ticket is issued, canceled, or changed; the other
is whether the ticket is paid, refunded totally, or refunded partially.
10 The booking date is updated for the tickets that are changed as the latest
booking day. So, we do not know the original booking date for these orders and
thus cannot include these tickets in our analysis.
11 Both connected trip and round trip are identified separately in train-ticket-
booking dataset and airline-ticket-booking dataset. For the cases in which an
individual books a train ticket to leave and an airline ticket to return, we regard
these two tickets as independent trips instead of a round trip.
12 We downloaded the data from https://quotsoft.net/air/, which are
retrieved from CNEMC.
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than 1,500 stations. Because AQI and PM2.5 are better known than the
rest of the pollutants and people may be more aware of and more
responsive to these two, we use AQI in our main analysis and PM2.5 for
our robustness check. We aggregate AQI and PM2.5 into the daily level
by taking the average of the hourly readings.

2.4. Weather variables

The weather data are obtained from the China Meteorological Data
Service Center (CMDSC),13 affiliated with the National Meteorological
Information Center of China. The data provide daily weather conditions
such as pressure, temperature, relative humidity, wind speed, wind di-
rection, sunshine duration, and precipitation, from 745 basic and
reference surface meteorological observation stations.14

Because some cities may have no stations, we aggregate the station-
level pollution and weather data into the city level using the following
procedure. If at least one station is within the city boundary, we use the
mean of the station readings; if no station is in the city, we use readings
of the station nearest to the city’s centroid.15

2.5. Summary statistics

The summary statistics are shown in Table 1. We keep all ticket
booking records between prefecture-level cities and 4municipality cities
and aggregate them into the city-pair-date level. We do not include the
city-pair-date cells with zero booking records, under the assumption that
people cannot book tickets between the specific city pair on that day if
not even one ticket is booked. Hence, our sample is an unbalanced panel.

Our sample contains 321 prefecture-level cities and four munici-
pality cities,16 89,451 city pairs in total, among which train tickets
involve 83,644 city pairs and airline tickets involve 29,908 city pairs.17

A city pair per day has about 33.4 and 20.2 ticket bookings departing
within one day for train and airline, respectively, and 16.8 and 21.8
ticket bookings departing within two to seven days for train and airline,
respectively. The AQI difference ranges from about − 489 to 485, with an
average of around zero (distribution of the AQI difference is shown in
Appendix Figure A.1). More train ticket bookings depart in 0–1 days
than in 2–7 days; by contrast, more airline tickets are booked to depart
in 2–7 days. On average, a visitor from a given origin city on a given date
will travel to a given destination city by train (air) within one day with a
probability of 1.49% (3.73%).

3. Empirical strategy

We study the impact of the AQI gap on decisions regarding short-

term trips at the city-pair-date level with the following econometric
specification18:

NumRatioijtr = β0+ β1
(
Pit − Pjt

)
+ f

(
Wit − Wjt

)
+ γim+ θjm+ δij+ϕt + εijtr,

(1)

where NumRatioijtr =
Numijtr∑365

t=1
Numit/365

(the unit of the denominator is 10,000

trips); r denotes four reservation windows, 0–1, 2–7, 8–30 days, and
more than 30 days, respectively; i denotes origin city; j denotes desti-
nation city; t denotes reservation date. The dependent variable is the
probability of individuals from an origin city i choosing to travel to
destination city j on reservation date t in the reservation window r. It is
defined as the ratio between the number of ticket bookings leaving from
city i to city j in the booking period r on a given reservation date t
(NumRatioijtr) and the average number of trips from the origin city i per
day that year (

∑365
t=1Numit/365). A NumRatioijtr of 100 means that, on

average, for every 10,000 trips from city i booked on date t, 100 of them
are booked to city j in the reservation window r, or that a visitor from
city i has a 1% probability of booking a ticket to city j on date t in the
reservation window r. The key explanatory variable is Pit − Pjt, i.e. the
pollution difference between city i and city j on date t. β1, the parameter
we are interested in, captures how the pollution gap between a city pair
i-j affects the probability of traveling from city i to city j in the reser-
vation window r on date t.

We further control for high-dimensional fixed effects and various
weather conditions. γim and θjm are city-year-month fixed effects for
departure and destination cities, respectively, to control for specific
time-varying characteristics of origin cities and destination cities such as
the attractiveness of the city; δij are city-pair fixed effects that absorb the
specific travel pattern between a city pair; ϕt are date fixed effects, to
account for seasonal and specific date patterns of travels; f

(
Wit − Wjt

)

denotes linear and quadratic forms of weather conditions including
temperature, air pressure, wind speed, and precipitation. All standard
errors are two-way clustered at the origin- and destination-city level.

3.1. Instrumental variable

We use an instrumental variable approach to estimate the causal
effect of pollution gaps because the pollution difference of a city-pair is
endogenous for the following two reasons:

Omitted Variable. Pollution is correlated with local economic condi-
tions and a city’s natural (unobservable) attractiveness. High-pollution
cities are likely to be developed cities that naturally attract visitors
and business trips. We control for the time-invariant characteristics are
controlled by destination-city fixed effects. However, a city’s attrac-
tiveness may also vary with time; for example, a big event such as the
Olympic Games would both increase the visiting attractiveness and
pollution, which leads to an upper bias estimation of ordinary least
squares (OLS). To rule out these confounding factors, we control for date
fixed effects and city-year-month fixed effects for both departure cities
and destination cities. Although we rule out most time-varying

13 http://data.cma.cn/data/detail/dataCode/SURF_CLI_CHN_MUL_DAY.html.
14 The unit of daily wind speed is m/s. The daily wind direction refers to the
direction where today’s maximum wind comes from, and it is by 360◦; for
example, a wind direction of 90◦ means the maximum wind today is east wind.
15 Because we only keep prefecture-level regions and municipality cities in our
sample, among which only three cities do not have pollution-monitoring sta-
tions and 42 cities do not have meteorological observation stations located
within the city boundary, we believe how the cities are dealt with will have
little effect on the results much. We also perform analysis by excluding these
cities without monitoring stations within their boundaries and find the results
are very similar to our main results.
16 Prefecture-level regions include prefectures, autonomous prefectures,
prefecture-level cities, and leagues. For simplicity, we refer to “prefecture-level
region” as “city” in our paper.
17 Our instrumental variable is built at the city-pair-date level. By construc-
tion, some origin (destination) cities do not have upwind nearby cities after we
exclude the counterpart destination (origin) cities, and thus do not have
instrumental variables. We remove these city pairs from our sample to make the
OLS and IV results comparable, which would not hurt much, reducing the
number of cities from 331 to 325 and city pairs from 91,833 to 89,451.

18 We assume the choice of ticket booking platforms is unaffected by the
difference in pollution between the origin and destination. In another word, the
platform choice of a trip between a city pair is independent of pollution dif-
ferences. To implicitly test this assumption, we interact AQI difference with the
week of Double Eleven, the largest online shopping carnival in China, during
which platforms offer attractive promotions. We instrument the interaction
term using the interaction of upwind pollution difference and the Double-
Eleven week, and then conduct 2SLS estimation. If the platform choice is
correlated with air pollution difference, we would thus expect a significant
coefficient of the interaction term of air pollution difference and Double Eleven.
As shown in Table A.1, the coefficients of the interaction are economically and
statistically insignificant, which could support our platform independence
assumption.
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attractiveness by controlling for city-month fixed effects, we cannot
completely mitigate the potential short-term time-varying attractiveness
of a city.

Reverse Causality. Pollution is correlated with economic activi-
ties—not only do trains or airplanes emit pollutants during travels, but
visitors also “bring” pollution out of the departure city and into the
destination city through their activities such as taking a taxi or public
transportation, and thus narrow the pollution gap between the two
cities. This narrowing of the gap will lead to an underestimation of the
pollution effect if not considered. This reverse causality problem is less
important because we focus on the ticket reservation date and the
reservation itself would not bring pollution to the destination city. For
the ticket bookings that depart within one day, however, this problem
may still cause the underestimation of the effects.

We take advantage of the spatial spillover characteristic of air
pollution to construct the instrument variable for the local air pollution
(Jia and Ku, 2019; Zhang et al., 2015). Spatial spillover of air pollution is
widely found in the literature, for example, Zhang et al. (2015) find
about half of Beijing’s pollution is from sources outside of the city mu-
nicipality. Additionally, wind speed is a major facilitator in transporting
PM2.5 (Wang et al., 2017). Also, daily travel bookings between two cities
are not correlated with the wind that day in their respective neighboring
cities, which satisfies the exclusion restriction on the IV. In this way, the
pollution of a city can be divided into two parts: one part is the pollution
generated by its own production and living activities, and the other part
is the pollution from other neighboring cities blown by the wind.
Following Chen et al. (2021) and Barwick et al. (2024), we utilize the
second part to construct the IV, based on the exogenous daily variation
of wind direction and wind speed. Let us take city i as an example, and
the same goes for city j. Upwind pollution in city i at reservation date t
(UPit) is the sum of pollution carried by wind in nearby upwind cities n
(excluding counterpart city j) within a given radius from city i, adjusted
by wind speed (WSnt) and the inverse squared distance between the city i
and city n (1/D2ni):

UPit =
∑

n∕=i

WSnt × cos(λni − ρnt)
D2
ni

×1[city n lies upwind of city i]nt × Pnt,

(2)

where city n is the nearby city within a given radius of city i, Pnt is the
pollution of city n on date t,WSnt is the wind speed in city n on date t, and

D2ni is the squared distance between city n and city i. As illustrated in
Fig. 1, λni is the angle between the north direction and the straight line
between nearby city n and city i; ρnt is the wind direction (ranging from
0 to 2 π) of city n on date t. 1[city n lies upwind of city i]nt is a dummy
equals to one if the nearby city n lies upwind of city i on date t, otherwise
zero. A negative cos(λni − ρnt) means the city n is located downwind of
city i; then, pollution in city n will not be a source of pollution in city i.

Table 1
Summary statistics (sample period: 2017–2019).

Variable 0–1 days 2–7 days

Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max

Panel A: train
# of ticket bookings 22,793,850 33.39 165.20 1 12,328 19,027,114 16.80 63.09 1 5,525
Ratio of ticket bookings 22,793,850 149.26 610.61 0.30 186,958.23 19,027,114 179.04 693.78 0.52 359,753.59
Panel B: flight
# of ticket bookings 5,471,235 20.20 61.676 1 2,820 6,679,679 21.78 58.10 1 2,166
Ratio of ticket bookings 5,471,235 373.20 1,471.40 1.01 1,095,000 6,679,679 305.66 1224.45 0.85 1,042,857.10
Panel C: pollution and weather difference (all)
AQI difference 25,055,837 − 0.14 47.22 − 481.44 484.45 22,274,124 0.11 48.37 − 488.96 483.42
AQI of origin city 25,056,088 69.57 43.11 1 500 22,274,380 68.82 43.23 1 500
AQI of destination city 25,056,114 69.71 42.99 1 500 22,274,373 68.71 43.29 1 500
Temperature diff (◦C) 25,323,932 − 0.01 6.27 − 53.55 54.15 22,520,218 − 0.02 6.79 − 55.15 55.45
Precipitation diff (mm) 25,351,376 0.01 12.59 − 1529.90 1529.90 22,544,257 0.003 13.03 − 1529.90 1529.90
Wind speed diff (m/s) 25,320,542 0.002 1.36 − 12.95 12.95 22,517,446 − 0.003 1.38 − 12.85 12.95
Atmospheric pressure diff (hPa) 25,322,281 − 0.35 72.91 − 434.32 433.23 22,518,578 0.42 78.28 − 434.32 433.23
Sunshine diff (h) 25,159,874 0.01 4.62 − 19 19 22,384,227 − 0.01 4.72 − 19 19
Relative humidity diff (%) 25,324,790 − 0.01 19.67 − 92.45 92.45 22,520,647 0.07 20.24 − 92.45 90
Upwind AQI difference (IV) 25,360,466 − 0.15 11.99 − 224.95 215.85 22,552,181 − 0.01 12.21 − 224.95 215.85

Notes. All the statistics are reported for each city pair per day during the sample period 2017–2019. Panels A and B report the summary statistics for train and airline
ticket bookings, respectively. # of ticket bookings is the number of ticket bookings between a city pair per day. Ratio of ticket bookings is the ratio of the number of
individuals traveling from a given origin city to a given destination city on a given date in a specific booking period and the average daily number of trips (in 10,000)
traveling from the origin city of that year. AQI difference is the difference between AQI in the origin city and that in the destination city. Upwind AQI difference is the
difference between upwind AQI (constructed using cities nearby) of the origin city and that of the destination city.

Fig. 1. IV construction
Notes. This figure illustrates how the IV is constructed. City n is the nearby city
of city i within a specific radius. ρ is the wind direction of city n, which has a
daily variation; λ is the angle between the north direction and the straight line
between the nearby city n and city i.
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We utilize the non-local variation of pollution in city i, which is the
part carried by the wind from upwind cities within a specific radius, and
then adjust it using wind speed in city n on date t and the inverse squared
distance. Upwind cities of city i are chosen based on the daily wind di-
rection of all nearby cities of city iwithin a given radius—wind direction
varies daily, and thus the list of upwind cities for a given city also
changes every day. Overall, the variation of our IV comes from the wind
speed of upwind city n, the wind direction of upwind city n, and the
distance between city i and upwind city n, which all have daily variation.

If city i and nearby city n are too close, city nmay affect city i through
channels other than just pollution transmission; therefore, to make the
exclusion restriction hold, we cannot make the radius too small. We also
cannot make the radius too large, because the prediction power would
be insufficient when the upwind city n is too far from city i. Therefore,
following Chen et al. (2021), we mainly use cities within the 100
km–300km buffer-zone radius of city i as the candidates for upwind
cities and use other radii for robustness checks (coefficients reported in
Table A.4). To further avoid the exclusion restriction being violated, we
exclude the destination city j from the candidate list if city j is one of the
nearby upwind cities of city i on date t, and exclude origin city i from the
candidate list if city i is one of the nearby upwind cities of city j on date t.

Figure A.2 Panel A presents the correlation between upwind AQI and
local AQI at the city level. Then, we use the upwind pollution difference
(UPit − UPjt) as the IV of the pollution gap (Pit − Pjt). Figure A.2 Panel B
shows the raw correlation between upwind AQI difference and AQI
difference at the city-pair level, without controlling any fixed effects. We
then perform two-stage least-squares (2SLS) estimation:

1st stage : Pit − Pjt = δ0 + δ1
(
UPit − UPjt

)
+ f

(
Wit − Wjt

)
+ γim

+θjm + δij + ϕt + ϵijt, (3)

2nd stage : NumRatioijtr = β0+ β1
(

̂Pit − Pjt
)
+ f

(
Wit − Wjt

)
+ γim

+θjm + δij + ϕt + εijtr. (4)

4. Results

4.1. Baseline results

Table 2 shows our baseline results for all travel bookings in columns
(1)–(2), train ticket bookings in columns (3)–(4), and airline bookings in
columns (5)–(6). We control for weather conditions, city-pair fixed ef-
fects, date fixed effects, origin-city-year-month fixed effects, and
destination-city-year-month fixed effects in all columns. The standard
errors are two-way clustered at the origin- and destination-city level. The
relative effect is reported as 50 times the estimated coefficient’s value
divided by the average of the dependent variable in each column, i.e. the
percentage change caused by a 50-unit increase in AQI difference.

Panel A of Table 2 reports the results from 2SLS estimation in
equations (3) and (4), and Panel B shows the OLS estimates in equation
(1). The KP-F statistics are all more than 145 for all groups, which reject
the existence of the weak-IV problem. As expected, the 2SLS estimates
are larger than the OLS estimates because of possible reverse-causality
issues which would bias the OLS estimates toward zero, especially for
the trips departing within a day.

We find that a 50-unit increase in the AQI gap (the standard devia-
tion of the AQI gap ranges from 45 to 60 units across different groups)
between an origin and a destination city significantly increases ticket
bookings (train and airline) from the origin city to the destination city
departing within one day and in two to seven days by 1.30% and 1.33%,
respectively.19 Additionally, the effects are slightly larger on train
tickets than on airline tickets. Regarding different travel modes, a 50-
unit increase in the AQI gap between a city pair leads to a 1.26% and
1.13% increase in train ticket bookings departing within a day and two
to seven days, whereas the corresponding effects are 1.12% and 0.83%
for flight bookings. The standard errors in the above analyses are two-
way clustered at the origin- and destination-city level and the results
are robust when one-way clustering the standard errors at the city pair
level, with results reported in Appendix Table A.3.

Next, we examine the nonlinear relationship between the AQI dif-
ference and ticket bookings. Several papers have found the nonlinear
effects of air pollution and individuals’ response to severe air pollution is
disproportionally higher than their response to high pollution (Chen
et al., 2021; Chen et al., 2018; Qin et al., 2019; Qin and Zhu, 2018).
Therefore, we follow the literature and decompose the continuous AQI
gap into six bins (AQI difference <35, in [35,50), [50,75), [75,150),
[150,250), and ≥ 250, respectively). As shown in Fig. 2, the effect gets
disproportionally larger as the AQI gap widens: the magnitude of the
coefficients increases with the pollution gap, indicating the nonlinear
effect of the air-pollution difference between cities on travels between
cities. Specifically, from the coefficients reported in Appendix Table A.2,
we show that compared with the base group (AQI difference less than
35), ticket bookings between a city pair will increase by 9.6%, and 4.5%
departing within one day and in two to seven days, respectively, if the
AQI in origin city is at least 250 units higher than the AQI in the
destination city.

We also conduct several robustness checks. First, as a falsification
test, we show in Table 3 that the AQI difference between a city pair does
not affect ticket bookings departing in more than one week, which lends
more support to our research design that our finding is not driven by
some mechanical correlation between the city-pair-date-level un-
observables and travel bookings.

Second, we replace AQI with PM2.5 as the measure of air quality and
find similar results for overall and train ticket bookings. As shown in
Table 4, the effects of the PM2.5 difference are slightly larger for airline
ticket bookings than the effects of AQI: a 50-unit increase of PM2.5 gap
between a city pair leads to a 1.59% and 1.02% increase in airline ticket
bookings departing in within one day and in two to seven days,
respectively.

Third, to ensure our results are robust to how we deal with zero cells,
we further keep all the city-pair-date cells and fill those with no records
of ticket bookings with zero, with the assumption that everyone can
book tickets between any city pair at any date. The coefficients are
shown in Table 5 and their values are similar to the baseline estimates.

Additionally, to investigate whether origin and destination pollution
have different effects, we include air pollution in the origin and desti-
nation separately on the right-hand side of the equation as a horserace
model. As shown in Table 6, a 50-unit increase in AQI in origin cities will
increase the train ticket bookings departing within one day (2–7 days)
by 2.01% (1.75%), whereas the destination pollution does not have a
statistically significant effect, which is in line with our expectation that

19 1.30% = 0.036*50/139.582, 1.33% = 0.042*50/157.025. The following
calculation of the relative effect of a 50-unit increase in AQI follows the same
logic. We also use the average number of daily ticket searches leaving from city i
that year as the denominator of the dependent variable, instead of the average
number of daily ticket bookings, to test whether the choice of denominator may
change our results. Similarly, we find a 50-unit increase in AQI leads to a 2%
increase in the ticket bookings leaving within one day, whereas it has no effect
on those leaving in more than one day.
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Table 2
Main results.

(1) (2) (3) (4) (5) (6)

All trips leaving in Train trips leaving in Flight trips leaving in

0–1 days 2–7 days 0–1 days 2–7 days 0–1 days 2–7 days

Dependent variable: AQI difference
Panel A: 2SLS
1st stage
Upwind AQI difference 1.687*** 1.663*** 1.671*** 1.634*** 1.684*** 1.695***

(0.110) (0.112) (0.108) (0.108) (0.139) (0.137)
KP F stat. 233.6 220.6 240 228.2 146.9 152.8

Dependent variable: Ratio of ticket bookings
2nd stage
AQI difference 0.036*** 0.042*** 0.038*** 0.041** 0.083* 0.050***

(0.006) (0.013) (0.008) (0.017) (0.044) (0.018)
Benchmark 139.582 157.025 149.355 178.998 372.117 304.989
Relative effect (%) 1.301 1.334 1.263 1.134 1.117 0.828

Dependent variable: Ratio of ticket bookings
Panel B: OLS
AQI difference 0.002 0.011*** 0.004 0.016** 0.017 0.007**

(0.002) (0.004) (0.003) (0.007) (0.021) (0.003)
Benchmark 139.582 157.025 149.355 178.998 372.117 304.989
Relative effect (%) 0.076 0.359 0.124 0.451 0.232 0.117
Observations 24,806,951 22,063,482 22,292,946 18,608,699 5,355,666 6,541,710
CityPair FE Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes
Destination-Year-Month FE Yes Yes Yes Yes Yes Yes
Origin-Year-Month FE Yes Yes Yes Yes Yes Yes

Notes. This table presents the impact of air pollution on travel decisions. Panel A reports the 2SLS estimates of equations (3) and (4), and Panel B reports the OLS
estimates of equation (1). For each column, the dependent variable is the probability of individuals from an origin city i choosing to travel to destination city j on
reservation date t in a specific booking period. Columns (1)–(2), (3)–(4), and (5)–(6) report the results for all, train, and airline ticket bookings, respectively. Columns
(1), (3), and (5) show the results for tickets booked to depart within a day, and columns (2), (4), and (6) report the results for tickets booked to depart in 2–7 days. All
regressions control for linear and quadratic forms of weather differences between the origin and destination cities, consisting of temperature, wind speed, precipi-
tation, sunshine, relative humidity, and atmospheric pressure. Benchmark is the average of the dependent variable, and the relative effect (%) is the ratio of the
estimated coefficient and benchmark, multiplied by 50. Standard errors in parentheses are robustly two-way clustered at the origin- and destination-city level. *p <

0.10, **p < 0.05, ***p < 0.01.

Fig. 2. Non-linearity
Notes. This figure plots the nonlinear effects of the AQI difference on ticket bookings. The dependent variable is the propensity of the daily average individuals
leaving from the origin city to a given destination city on a given date in a specific booking period. Each dot denotes the relative effect (%) calculated by dividing the
estimated coefficient (reported in Table A.2) of each bin of the AQI difference and the benchmark value of the dependent variable. The bars are the 95% confi-
dence intervals.
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higher pollution in the origin city plays a major role in pushing people to
flee high-polluted cities. For flight bookings, we find slightly different
results that the pulling from the destination plays a larger role than the
pushing from the origin, shown in columns (5)–(6).

Furthermore, to ensure the robustness of our findings concerning the
choice of the dependent variable, we conduct additional robustness
checks using alternative definitions of the dependent variable. Firstly,
we replace the denominator in our original dependent variable with
different measures of the origin city’s daily trips, which remain constant
across years. This could reserve the variance of total trips across origin
city-year. We employ two alternative measurements as the denominator:
1) the average daily number of trips over the three-year period
(2017–2019) for ratio2, and 2) the average daily number of trips in the
first year of the sample (2017) for ratio3, to measure the probability of
individuals from an origin city i choosing to travel to city j on date t. As
shown in Appendix Table A.5, a 50-unit increase in the AQI difference
between a city pair leads to a 1.313% (1.380%) increase in trips leaving
within 0–1 (2–7) days when using ratio2, and a 1.427% (1.197%) in-
crease in trips leaving within 0–1 (2–7) days when utilizing ratio3. The
magnitudes of these coefficients are notably consistent with our baseline
results. In addition, we replace the dependent variable with the loga-
rithm of the number of trips, as another robustness check. The results,
presented in Appendix Table A.6, are similar to our baseline findings,
further validating the robustness of our results.

4.2. Heterogeneity

The detailed travel information, especially the traveler’s personal
information, allows us to investigate the heterogeneities of the main
results. If the increased trips are indeed induced by pollution, then these
trips are more likely to be relatively low-cost travel for leisure purposes.
We would expect the effects of pollution to be greatest for groups with

lower short-term travel costs, and for trips traveling to destinations that
are geographically closer—allowing for travel completion within two
days—and to destinations that are, on average, cleaner.

First, we are interested in how people of different ages respond to
pollution differently. Williams (2019) also indicates that the decisions to
engage in defensive behaviors are significantly correlated with age.
Fig. 3 shows the estimated relative effects for different age groups by
dividing our sample into four age groups: 0–18 years old, 19–35 years
old, 36–55 years old, and more than 55 years old. The coefficients are
reported in Appendix Table A.7.20 We find the effect is the strongest for
people ages 19–35 and declines in older cohorts. For different age
groups, we need to consider not only people’s awareness of air-pollution
hazards but also the willingness and feasibility to avoid pollution by
taking short-term trips in terms of pecuniary cost and time cost.
Although children and old people are the most vulnerable groups, they
may bear higher costs for short-term trips than middle-aged people: the
old may find it more troublesome to make short-term trips to avoid
pollution compared with staying indoors or wearing masks, and children
have less flexibility to travel during semesters. Additionally,
middle-aged people may prefer outdoor activities and thus value out-
door air quality more than old people do.

We further investigate where those people are going, by dividing our
sample into intra-province and inter-province trips, which could support
our hypothesis that people may want short-term trips to avoid pollution.
As shown in Fig. 4 (with coefficients reported in Appendix Table A.8),

Table 3
Falsification test–ticket bookings in more than 7 Days.

(1) (2) (3) (4) (5) (6)

All trips leaving in Train trips leaving in Flight trips leaving in

8–30 days >30 days 8–30 days >30 days 8–30 days >30 days

Dependent variable: AQI difference
Panel A: 2SLS
1st stage
Upwind AQI difference 1.684*** 1.720*** 1.662*** 1.685*** 1.706*** 1.743***

(0.117) (0.120) (0.113) (0.101) (0.136) (0.134)
KP F stat. 207.7 204.8 217.2 278.7 157.1 169.6

Dependent variable: Ratio of ticket bookings
2nd stage
AQI difference − 0.008 0.163 − 0.005 0.331 0.020 0.133

(0.024) (0.219) (0.037) (0.606) (0.021) (0.098)
Benchmark 211.080 893.830 247.876 1849.104 367.998 789.255
Relative effect (%) − 0.179 0.912 − 0.111 0.896 0.266 0.842

Dependent variable: Ratio of ticket bookings
Panel B: OLS
AQI difference − 0.027* − 0.070 − 0.037 − 0.060 0.0005 − 0.052

(0.016) (0.135) (0.022) (0.314) (0.010) (0.056)
Benchmark 211.080 893.830 247.876 1849.104 367.998 789.255
Relative effect (%) − 0.642 − 0.394 − 0.737 − 0.162 0.006 − 0.326
Observations 16,443,826 3,788,614 13,467,361 1,739,837 5,406,839 2,465,881
CityPair FE Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes
Destination-Year-Month FE Yes Yes Yes Yes Yes Yes
Origin-Year-Month FE Yes Yes Yes Yes Yes Yes

Notes. This table presents the falsification test using tickets booked to depart in more than one week. Panel A reports the 2SLS estimates of equations (3) and (4), and
Panel B reports the OLS estimates of equation (1). For each column, the dependent variable is the probability of individuals from an origin city i choosing to travel to
destination city j on reservation date t in a specific booking period. Columns (1)–(2), (3)–(4), and (5)–(6) report the results for all, train, and airline ticket bookings,
respectively. Columns (1), (3), and (5) show the results for tickets booked departing in 8–30 days, and columns (2), (4), and (6) report the results for tickets booked to
depart in more than 30 days. All regressions control for linear and quadratic forms of weather differences between origin and destination cities, consisting of tem-
perature, wind speed, precipitation, sunshine, relative humidity, and atmospheric pressure. Benchmark is the average of the dependent variable, and the relative effect
(%) is the ratio of the estimated coefficient and benchmark, multiplied by 50. Standard errors in parentheses are robustly two-way clustered at the origin- and
destination-city level. *p < 0.10, **p < 0.05, ***p < 0.01.

20 The benchmark value we used to compute the relative effect is the average
propensity of the specific age group from city i at time t traveling to city j; for
example, 639 (Table A.7, col. 1) means that, on average, people ages 0–18 years
old outflowing from origin city i will have a 6.39% probability of traveling to
destination city j on date t.
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we find the effects are driven by people who book train tickets for intra-
province trips and depart within one day, but not for airline tickets. The
difference in the estimated effects for intra-province and inter-province
trips are statistically significant, based on Fisher’s permutation test.
Next, we further divide the train ticket bookings into three groups ac-
cording to the number of 4 A-plus tourist attractions21 of the destination
city. Fig. 5 (with coefficients reported in Appendix Figure A.9) shows
that people are departing to cleaner intra-province cities with more
tourist attractions within one day and to cleaner cities with more tourist
attractions outside the province in two to seven days, in line with the
purpose of pollution avoidance. In our sample, the median length of a
round-trip by train is about zero to one days, which is consistent with
our findings of short-term avoidance of air pollution exposure—people
tend to travel more by train than by air to an intra-province city with
more tourist attractions when their origin city is more polluted than the
destination city.

In addition, we examine the heterogenous responses of pollution-
induced trips across different average pollution levels of origin or
destination cities. Specifically, for every city in our sample, we count the
number of days between 2017 and 2019 where the daily average AQI
surpassed the threshold 100, which is commonly used as a threshold for
a polluted city. We then divide the sample into two categories based on
the median number of days exceeding this threshold, resulting in two
groups each comprising 173 cities. As shown in Table 7, the effects of

AQI difference between a city pair are more prominent if the origin city
is on average a high-pollution city, and if the destination city is on
average a clean city. Specifically, if the origin city has higher pollution
levels, a 50-unit increase in the AQI difference leads to a 1.452%
(1.669%) increase in trips between the city pair departing within 0–1
(2–7) days. In contrast, for origin cities with lower pollution levels, this
effect decreases to 0.811% and 0.681% respectively for the same de-
parture intervals. Moreover, for cleaner destination cities, a 50-unit in-
crease in the AQI difference leads to a 2.209% (1.946%) increase in trips
between the city pair departing within 0–1 (2–7) days. Conversely, for
less clean destinations, the effects diminish to 1.117% and 1.224%
respectively for the same time frames. It is important to note that a
“more polluted city” refers to a city that, on average, experiences higher
pollution levels compared to other cities over the sample period, but this
does not necessarily mean that the city is more polluted on any given
day.

5. Mechanisms and further discussions

5.1. Rational and behavioral factors in trip decision-making process

Two types of decision-making factors could be behind the pollution-
induced trips: rational and behavioral considerations. Travel decisions
could be rational, which means that the trips are planned to avoid
pollution exposure, based on air pollution forecasts for the intended date
of departure. These forecasts may originate from either official forecasts
released to the public by governmental agencies, or travelers’ personal
predictions, informed by current pollution levels and the observed ten-
dency for air pollution to persist over time. Alternatively, decisions may
be induced by emotional shocks: people in bad environments are likely
to book tickets to reduce stress because air pollution reduces happiness
(Zhang et al., 2017); or people are just more irrational and sensitive to

Table 4
Robustness – PM2.5 as the measure of air pollution.

(1) (2) (3) (4) (5) (6)

All trips leaving in Train trips leaving in Flight trips leaving in

0–1 days 2–7 days 0–1 days 2–7 days 0–1 days 2–7 days

Dependent variable: PM2.5 difference
Panel A: 2SLS
1st stage
Upwind PM2.5 difference 2.234*** 2.209*** 2.212*** 2.168*** 2.252*** 2.271***

(0.126) (0.130) (0.123) (0.126) (0.166) (0.164)
KP F stat. 312.4 288.3 321.2 297.4 184.7 191.3

Dependent variable: Ratio of ticket bookings
2nd stage
PM2.5 difference 0.037*** 0.043*** 0.036*** 0.037* 0.118* 0.062***

(0.007) (0.015) (0.009) (0.020) (0.063) (0.019)
Benchmark 139.579 157.022 149.354 178.996 372.111 304.984
Relative effect (%) 1.341 1.359 1.210 1.035 1.592 1.015

Dependent variable: Ratio of ticket bookings
Panel B: OLS
PM2.5 difference 0.004 0.015** 0.007 0.020** 0.022 0.008**

(0.003) (0.006) (0.006) (0.009) (0.029) (0.003)
Benchmark 139.579 157.022 149.354 178.996 372.111 304.984
Relative effect (%) 0.147 0.477 0.235 0.562 0.292 0.137
Observations 24,806,706 22,063,213 22,292,807 18,608,569 5,355,522 6,541,532
CityPair FE Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes
Destination-Year-Month FE Yes Yes Yes Yes Yes Yes
Origin-Year-Month FE Yes Yes Yes Yes Yes Yes

Notes. This table presents the robustness check of using PM2.5 as an alternative measure of air pollution. Panel A reports the 2SLS estimates of equations (3) and (4), and
Panel B reports the OLS estimates of equation (1). For each column, the dependent variable is the probability of individuals from an origin city i choosing to travel to
destination city j on reservation date t in a specific booking period. Columns (1)–(2), (3)–(4), and (5)–(6) report the results for all, train, and airline ticket bookings,
respectively. Columns (1), (3), and (5) show the results for tickets booked to depart within a day, and columns (2), (4), and (6) report the results for tickets booked to
depart in 2–7 days. All regressions for control for linear and quadratic forms of weather differences between origin and destination cities, consisting of temperature,
wind speed, precipitation, sunshine, relative humidity, and atmospheric pressure. Benchmark is the average of the dependent variable, and the relative effect (%) is the
ratio of the estimated coefficient and benchmark, multiplied by 50. Standard errors in parentheses are robustly two-way clustered at the origin- and destination-city
level. *p < 0.10, **p < 0.05, ***p < 0.01.

21 According to the Standard of Rating for Quality of Tourist Attractions (GB/T
17775-2003) of the People’s Republic of China, all tourist attractions can be
divided into five levels, from highest to lowest as AAAAA, AAAA, AAA, AA, A-
level tourist attractions. Our data contain 261 AAAAA tourist attractions and
3,659 AAAA ones—we denote AAAA and AAAAA as “4 A-plus” tourist
attractions.
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travel promotions on polluted days. A few papers have documented that
air pollution leads to cognitive biases in decision-making (Chang et al.,
2018; Chew et al., 2021; Li et al., 2019; Qin et al., 2019; Zhang et al.,
2018). Notably, if individuals exhibit projection bias (Busse et al., 2015;
Conlin et al., 2007) on polluted days, they may incorrectly predict their
utility of travel in the near future and regret their decisions afterward.

To examine these factors, we first investigate whether individuals
experience regret after booking tickets on days with a high pollution
gap. Fortunately, our data also contain the refund and cancellation in-
formation of the ticket bookings, which allows us to examine whether
travelers regret the decision. The raw data contain a ticket status label
indicating whether the ticket has been refunded or canceled,22 by which
we can retrieve refund information for train tickets and both refund and
cancellation information for airline tickets. Our sample from 2017 to
2019 includes about 52.6 million refunds and 34.5 million cancellations
of airline tickets, and 221.4 million refunds of train tickets. We take the
union of the city-pair-date cells of successful reservations, refunds, and
cancellations as the city-pair dates for which a refund or cancellation can
take place, and then replace those city-pair dates that have no refund or
cancellation records with zero. The underlying assumption here is that
people can receive a refund for or cancel their orders on the day they
make a successful reservation.

Similar to our main analysis, we study the refund and cancellation
behavior under the following specification:

1st stage : Pit − Pjt
= δ0 + δ1

(
UPit − UPjt

)
+ f

(
Wit − Wjt

)
+ γim + θjm + δij + ϕt

+ ϵijt,
(5)

2nd stage : RefundRatioijt

= θ0 + θ1
(

̂Pit − Pjt
)
+ f

(
Wit − Wjt

)
+ γim + θjm + δij + ϕt + εijt,

(6)

where RefundRatioijt =
NumRefundijt

Numijt+NumRefundijt .
23

NumRefundijt is the number of trips who originally booked a ticket on
date t to travel from city i to city j but received a refund later; Numijt is
the number of trips who booked a ticket on date t to travel from city i to
city j and successfully traveled. This indicator measures the probability of
refunds and cancellation for trips that are booked on booking date t to
travel from origin i to destination j. If the irrational factors play a role in
individuals’ decisions to travel to cleaner cities when exposed to high
pollution, individuals may regret their decision later; thus, we would
expect the coefficient of the pollution gap to be positive.

As shown in Table 8, those train tickets booked on days with a 50-
unit-higher AQI gap between origin and destination cities have, on
average, a 1.64 % percent higher probability of being refunded subse-
quently, indicating that individuals regret their decisions on high-AQI

Table 5
Robustness – fill zero for lack-of-observed booking records.

(1) (2) (3) (4) (5) (6)

All trips leaving in Train trips leaving in Flight trips leaving in

0–1 days 2–7 days 0–1 days 2–7 days 0–1 days 2–7 days

Dependent variable: AQI difference
Panel A: 2SLS
1st stage
Upwind AQI difference 1.791*** 1.791*** 1.779*** 1.779*** 1.712*** 1.712***

(0.110) (0.110) (0.107) (0.107) (0.138) (0.138)
KP F stat. 266.9 266.9 274.2 274.2 154.7 154.7

Dependent variable: Ratio of ticket bookings
2nd stage
AQI difference 0.026*** 0.030*** 0.024*** 0.028** 0.067 0.044**

(0.005) (0.010) (0.006) (0.011) (0.043) (0.022)
Benchmark 101.148 101.215 108.909 108.986 238.832 238.923
Relative effect (%) 1.265 1.504 1.108 1.279 1.398 0.930

Dependent variable: Ratio of ticket bookings
Panel B: OLS
AQI difference 0.002 0.007** 0.003 0.009** 0.008 0.002

(0.002) (0.003) (0.002) (0.004) (0.016) (0.004)
Benchmark 101.148 101.215 108.909 108.986 238.832 238.923
Relative effect (%) 0.076 0.330 0.130 0.413 0.159 0.050
Observations 34,237,113 34,237,113 30,574,889 30,574,889 8,356,476 8,356,476
CityPair FE Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes
Destination-Year-Month FE Yes Yes Yes Yes Yes Yes
Origin-Year-Month FE Yes Yes Yes Yes Yes Yes

Notes. This table presents the robustness check of replacing the cells of city pair-date that have no ticket booking records with zero. Panel A reports the 2SLS estimates of
equations (3) and (4), and Panel B reports the OLS estimates of equation (1). For each column, the dependent variable is the probability of individuals from an origin
city i choosing to travel to destination city j on reservation date t in a specific booking period. Columns (1)–(2), (3)–(4), and (5)–(6) report the results for all, train, and
airline ticket bookings, respectively. Columns (1), (3), and (5) show the results for tickets booked to depart within a day, and columns (2), (4), and (6) report the results
for tickets booked to depart in 2–7 days. All regressions control for linear and quadratic forms of weather differences between origin and destination cities, consisting of
temperature, wind speed, precipitation, sunshine, relative humidity, and atmospheric pressure. Benchmark is the average of the dependent variable, and the relative
effect (%) is the ratio of the estimated coefficient and benchmark, multiplied by 50. Standard errors in parentheses are robustly two-way clustered at the origin- and
destination-city level. *p < 0.10, **p < 0.05, ***p < 0.01.

22 We filtered tickets that are refunded or canceled under the following
criteria: for a train ticket, if the payment status is “paid” and the ticket status is
“refunded,” we categorize it as a refunded ticket; for an airline ticket, if the
payment status is “unpaid” and the ticket is not printed, we categorize it as a
cancellation ticket, and if the ticket status is “refunded,” we categorize it as a
refunded ticket. In brief, refund means someone placed an order and paid for
the ticket but received a refund for it later. Cancellation means someone placed
an order but cancelled it before payment.

23 We replace the dependent variable with NumRefundijt
Numijt

and the results are robust

as those using NumRefundijt
Numijt+NumRefundijt .
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Table 6
Robustness – origin and destination pollution.

(1) (2) (3) (4) (5) (6)

Ratio of ticket bookings

All trips leaving in Train trips leaving in Flight trips leaving in
0–1 days 2–7 days 0–1 days 2–7 days 0–1 days 2–7 days

Panel A: 2SLS
AQI origin 0.052*** 0.056*** 0.060*** 0.063*** 0.024 0.035**

(0.009) (0.015) (0.010) (0.019) (0.017) (0.015)
AQI destination − 0.019** − 0.032 − 0.016 − 0.025 − 0.129 − 0.062**

(0.009) (0.023) (0.012) (0.029) (0.086) (0.027)
Benchmark 139.449 156.998 149.195 178.931 372.120 304.993
Relative effect of origin (%) 1.874 1.776 2.014 1.752 0.316 0.573
Relative effect of destination (%) − 0.672 − 1.029 − 0.520 − 0.699 − 1.739 − 1.016
KP F stat. 119.7 111.8 123.2 115.4 52.89 74.87
Panel B: OLS
AQI origin 0.012*** 0.016*** 0.016*** 0.025*** − 0.001 0.000005

(0.004) (0.005) (0.005) (0.007) (0.010) (0.006)
AQI destination 0.007 − 0.010 0.007 − 0.012 − 0.031 − 0.013**

(0.004) (0.009) (0.006) (0.013) (0.040) (0.006)
Benchmark 139.449 156.998 149.195 178.931 372.120 304.993
Relative effect of origin (%) 0.435 0.502 0.544 0.695 − 0.010 0.00009
Relative effect of destination (%) 0.251 − 0.304 0.250 − 0.333 − 0.423 − 0.212
Observations 25,001,049 22,225,854 22,468,239 18,743,784 5,394,328 6,590,030
CityPair FE Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes
Destination-Year-Month FE Yes Yes Yes Yes Yes Yes
Origin-Year-Month FE Yes Yes Yes Yes Yes Yes

Notes. This table presents results of including both air pollution in origin and destination cities as independent variables. Panels A and B report the 2SLS and OLS
estimates, respectively. For each column, the dependent variable is the probability of individuals from an origin city i choosing to travel to destination city j on
reservation date t in a specific booking period. Columns (1)–(2), (3)–(4), and (5)–(6) report the results for all, train, and airline ticket bookings, respectively. Columns
(1), (3), and (5) show the results for tickets booked to depart within a day, and columns (2), (4), and (6) report the results for tickets booked to depart in 2–7 days. All
regressions control for linear and quadratic forms of weather conditions in both origin and destination cities, consisting of temperature, wind speed, precipitation,
sunshine, relative humidity, and atmospheric pressure. Benchmark is the average of the dependent variable, and the relative effect (%) is the ratio of the estimated
coefficient of origin city’s air pollution and benchmark, multiplied by 50. Standard errors in parentheses are robustly two-way clustered at the origin- and destination-
city level. *p < 0.10, **p < 0.05, ***p < 0.01.

Fig. 3. Heterogeneity in Age
Notes. This figure plots the relative effects and the 95% confidence intervals for different age cohorts. The figure on the left (right) shows the results for tickets booked
to depart in 0–1 days (2–7 days). Each dot denotes the relative effect (%) of a 10-unit increase in the AQI gap, which is calculated by dividing the estimated co-
efficient (reported in Table A.7) of the AQI difference by the benchmark value of the dependent variable and then multiplying by 50.
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gap days. This increase in refund rates aligns with the theories of
behavioral factors such as projection bias (Busse et al., 2015; Conlin
et al., 2007). Specifically, if individuals exhibit projection bias, they may

mis-predict their future utility of travel and subsequently regret their
decisions. We did not find such refunding behavior in airline ticket
bookings, probably because the refund fee for airline tickets is much

Fig. 4. Heterogeneity, Intra-province and Inter-province
Notes. This figure plots the relative effects and the 95% confidence intervals for intra-province and inter-province trips. The figure on the left (right) shows the results
for tickets booked to depart in 0–1 days (2–7 days). Blue and red bars denote effects on train and airline ticket bookings, respectively. Each dot denotes the relative
effect (%) of a 50-unit increase in the AQI gap, which is calculated by dividing the estimated coefficient (reported in Table A.8) of the AQI difference by the
benchmark value of the dependent variable and then multiplying by 50. (For interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)

Fig. 5. Heterogeneity, 4 A-plus Tourist Attractions (Train)
Notes. This figure plots the heterogeneous relative effects and the 95% confidence intervals for train tickets, by dividing the sample into six groups according to the
number of tourist attractions in the destination city and whether the trip is intra-province or inter-province. The figure on the left (right) shows the results for tickets
booked to depart in 0–1 days (2–7 days). A larger xtile means more 4 A-plus tourist attractions in the destination city. Each dot denotes the relative effect (%) of a 50-
unit increase in the AQI gap, which is calculated by dividing the estimated coefficient (reported in Table A.9) of the AQI difference by the benchmark value of the
dependent variable and then multiplying by 50.
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higher than for train tickets (almost zero) and individuals are more
cautious when purchasing airline tickets.

What role does official forecasting play in the decision-making pro-
cess of trip-booking? If people were rational, today’s pollution level
should have little predictive power on tomorrow’s travel, conditional on
the forecasted pollution level tomorrow.24 To explore this hypothesis,
we collect pollution forecast data for 46 cities from September 2023 to
January 2024 from the Air Quality Forecasting Information Release
System.25 We conduct an extended analysis, incorporating pollution
forecasts for both the origin and destination cities into our regression
models. Specifically, for travels departing within a 0–1 day window, we
utilize the 24-h AQI forecast, and for travels departing in 2–7 days, we
refer to the 72-h AQI forecast. The upwind AQI difference is used as an
instrumental variable for AQI difference at the booking date, as in our
baseline approach.

Table A.10 presents suggestive evidence that, conditional on AQI
forecasts, the AQI difference on the booking date has a negligible impact

on travel flows between a city pair. This suggests that travelers make trip
decisions based on these forecasts to avoid future pollution, rather than
merely reacting irrationally to current pollution. However, it is impor-
tant to note that this discussion is based on a relatively short sample
period of five months and that the air quality in China has been
improving over time.26 Interestingly, it is AQI forecasts in the origin city
instead of that in the destination city that have a noticeable impact on
travel flows. This aligns with the results showcased in Table 6, which
indicates that higher pollution levels in the origin city has a larger effect.

Review the findings we have so far: 1) Train tickets booked on days
with a higher AQI-gap are more likely to be refunded later, indicating
behavioral factors in trip-booking behavior; 2) Over a small sample of
five months, conditional on pollution forecasts, today’s AQI difference
has little predictive power on future travel, indicating rational factors in
trip-booking (but this finding should be interpreted with caution due to
the limited sample). Overall, these findings suggest that both rational
and behavioral factors play a role in the decision-making process for
booking trips to avoid air pollution.

5.2. Intertemporal substitution

To test whether these “pollution-induced” trips are newly generated
or just intertemporal shifts—individuals bringing forward the travel
plans that they have already made when the origin city is more
polluted—we estimate the cumulative effects over different time pe-
riods. Under the distributed lag model NumRatioijtr =

∑k
τ=0βτ

(
Pi,t− τ −

Pj,t− τ
)
+ f

(
Wit − Wjt

)
+ γim+ θjm+ δij+ ϕt + εijtr, we are concerned about

high autocorrelation among the lagged terms Pi,t− τ − Pj,t− τ, so we follow
Barwick et al. (2024) and use the IV version of a flexible distributed lag

Table 7
Heterogeneity – in pollution level of origin or destination city.

(1) (2) (3) (4)

0–1 days 2–7 days

Less
Polluted

More
Polluted

Less
Polluted

More
Polluted

Panel A: by origin’s pollution level
AQI difference 0.027** 0.035*** 0.025 0.046**

(0.014) (0.008) (0.016) (0.020)
Coefficient
difference

− 0.008 − 0.022***

p-value 0.100 0.000
Benchmark 166.268 121.207 182.115 138.931
Relative effect (%) 0.811 1.452 0.681 1.669
KP F stat. 169.5 179.3 169.7 162.8
Observations 10,115,792 14,691,136 9,244,829 12,818,625
Panel B: by destination’s pollution level
AQI difference 0.059*** 0.032*** 0.058*** 0.040**

(0.011) (0.007) (0.019) (0.017)
Coefficient
difference

0.026*** 0.018**

p-value 0.000 0.033
Benchmark 132.861 144.121 149.287 162.718
Relative effect 2.209 1.117 1.946 1.224
KP F stat. 175.3 172.6 173.7 158
Observations 10,002,242 14,804,702 9,354,356 12,709,115
CityPair FE Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
Destination-Year-
Month FE

Yes Yes Yes Yes

Origin-Year-Month
FE

Yes Yes Yes Yes

Notes. This table presents heterogeneity in pollution level of origin or destination
cities. Panel A report the heterogeneity in origin’s pollution level, and Panel B
reports the heterogeneity in origin’s pollution level. Columns (1)–(2) and (3)–(4)
report the results for ticket bookings leaving in 0–1 days and 2–7 days, respec-
tively. For each column, the dependent variable is the probability of individuals
from an origin city i choosing to travel to destination city j on reservation date t
in a specific booking period. All regressions control for linear and quadratic
forms of weather differences between origin and destination cities, consisting of
temperature, wind speed, precipitation, sunshine, relative humidity, and at-
mospheric pressure. Benchmark is the average of the dependent variable, and the
relative effect (%) is the ratio of the estimated coefficient and benchmark,
multiplied by 50. Standard errors in parentheses are robustly two-way clustered
at the origin- and destination-city level.

Table 8
Refund and cancellation.

(1) (2) (3)

Ratio of refunds/cancellations

Train Flight

Refund Refund Cancellation

Panel B: 2SLS
AQI difference 0.006** 0.003 0.001

(0.002) (0.009) (0.003)
Benchmark 18.434 42.057 25.556
Relative effect (%) 1.641 0.382 0.148
KP F stat. 274.2 154.7 154.7
Panel A: OLS
AQI difference − 0.001 0.001 − 0.001

(0.001) (0.004) (0.001)
Benchmark 18.434 42.057 25.556
Relative effect (%) − 0.165 0.066 − 0.227
Observations 30,574,889 8,356,476 8,356,476
CityPair FE Yes Yes Yes
Date FE Yes Yes Yes
Destination-Year-Month FE Yes Yes Yes
Origin-Year-Month FE Yes Yes Yes

Notes. This table presents the effect of the AQI gap on ticket refunds/cancella-
tions. Panel A reports OLS estimates, and Panel B reports 2SLS estimates using
equations (5) and (6). The dependent variable of columns (1) is the refund rate of
train tickets and that of columns (2)–(3) is the refund/cancellation rate of airline
tickets. All regressions control for linear and quadratic forms of weather dif-
ferences between origin and destination cities, consisting of temperature, wind
speed, precipitation, sunshine, relative humidity, and atmospheric pressure.
Benchmark is the average of the dependent variable, and the relative effect (%) is
the ratio of the estimated coefficient and benchmark, multiplied by 50. Standard
errors in parentheses are robustly two-way clustered at the origin- and
destination-city level. *p < 0.10, **p < 0.05, ***p < 0.01.

24 We thank one of the referees for proposing the test to investigate the role of
official pollution forecasts. By “rational”, we mean that individuals make trip-
booking decisions with the intention of gaining air quality improvements
through trips, based on the information available to them.
25 The website we collected data from is https://air.cnemc.cn:18014/.

26 Specifically, the average daily AQI during our sample period was 58.6,
compared to an average of 66.6 during the years 2017–2019.
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model, which allows for flexible and smooth long-term effects and deals
with the high-autocorrelation issues. βτ are specified as cubic B-spline
functions of time with one segment:

βτ = γ0 + γ1τ + γ2τ2 + γ3τ3. (7)

The contemporaneous effect is β0 = γ0, and the effect of pollution
from τ days in the past is βτ = γ0 + γ1τ+ γ2τ2 + γ3τ3. Then, we substitute
βτ into the distributed lag model and get

NumRatioijtr=
∑k

τ=0
βτ
(
Pi,t− τ − Pj,t− τ

)
+ f

(
Wit

− Wjt
)
+γim+θjm+δij+ϕt+εijt=γ0

(
Pit − Pjt

)
+(γ0+γ1+γ2+γ3)

(
Pi,t− 1

− Pj,t− 1
)
+…+

(
γ0+γ1k+γ2k2+γ3k3

)(
Pi,t− k − Pj,t− k

)
+ f

(
Wit

− Wjt
)
+γim+θjm+δij+ϕt+εijtr=γ0v1,ijt+γ1v2,ijt+γ2v3,ijt+γ3v4,ijt+ f

(
Wit

− Wjt
)
+γim+θjm+δij+ϕt+ εijtr,

(8)

where v1,ijt =
(
Pit − Pjt

)
+

(
Pi,t− 1 − Pj,t− 1

)
+ …+

(
Pi,t− k − Pj,t− k

)
,v2,ijt =

(
Pi,t− 1 − Pj,t− 1

)
+ 2

(
Pi,t− 2 − Pj,t− 2

)
+ …+ k

(
Pi,t− k − Pj,t− k

)
, v3,ijt =

(
Pi,t− 1 − Pj,t− 1

)
+ 22

(
Pi,t− 2 − Pj,t− 2

)
+ …+ k2

(
Pi,t− k − Pj,t− k

)
, v4,ijt =

(
Pi,t− 1 − Pj,t− 1

)
+ 23

(
Pi,t− 2 − Pj,t− 2

)
+ …+ k3

(
Pi,t− k − Pj,t− k

)
,

respectively. We can then estimate the cumulative effect
∑k

τ=0βτ, which
is a linear combination of {γi}

3
i=0. If the positive coefficients in the

baseline results are entirely caused by intertemporal substitution over a
period, the cumulative effect

∑k
τ=0βτ should be insignificantly different

from zero.
Fig. 6 plots the path of cumulative effects over different time periods,

with each dot denoting the sum of contemporaneous and lagged effects.
We can see the cumulative effect increases over the seven-day window.
In particular, a 50-unit AQI gap leads to a 1.99% (3.13%) increase in
overall ticket bookings leaving within zero to one (2–7) days, compared
with the contemporaneous effect of 0.94% (0.93%). We find no evidence
of intertemporal shifting within a week for train tickets, which means
the pollution-induced train trips are newly generated; however, we find

the cumulative effects within a week for airline tickets mute, which
means the airline tickets bookings are likely to be intertemporal shifting.

To study how the effect of pollution on ticket bookings changes over
time, we also plot the coefficients of the lagged pollution gaps in Ap-
pendix Figure A.4. We find for travels by train, today’s booking de-
cisions are also affected by the pollution gap in the past few days, but to
a lesser extent than by pollution today; in contrast, airline ticket book-
ings are not affected by the pollution gap in the past few days.

We also estimate the lead effects in a similar manner. It is important
to note that we use pollution gap on the booking date instead of the
departure date, so the existence of lead effects indicates that individuals
respond to future pollution levels to avoid exposure. As shown in Ap-
pendix Figure A.5 Panel (a), for trips departing within 0–1 days, we find
that the pollution gap on day 0 has the greatest effect. Additionally,
there are significant lead effects at t= 1 (one day after the booking date),
with coefficients approximately half the magnitude of those at t = 0.
Lead effects from t = 2 to t = 7 are much smaller although statistically
significant. In contrast, for trips departing within 2–7 days, as shown in
Panel (b) of Figure A.5, booking decisions respond to future pollution
gaps over four days, with the coefficients decreasing in magnitude from
day 0 to day 4.

Last but not least, the effects of pollution gap on the booking date (t
= 0) are the largest in specifications that control a series of lagged or
lead terms, as shown in Figure A.4 and Figure A.5. This further supports
our theory that individuals’ trip decisions are directly affected by
pollution levels on the booking date.

5.3. Willingness to pay

Lastly, we use the instrumental variable approach to estimate the
willingness to pay for short-term trips to avoid air pollution. Exploiting
the price data of airline and train tickets, we can firstly estimate the cost
of pollution in the following reduced-form analysis:

NumRatioijtr =α0 + α1
(
Pit − Pjt

)
+ α2priceijtr + γim + θjm+ δij+ϕt + εijtr,

(9)

Fig. 6. Cumulative Effects over Different Periods
Notes. This figure plots the relative cumulative effects and the 95% confidence intervals over different time periods. The figures on the left (right) show the results for
tickets booked to depart in 0–1 days (2–7 days). Each dot denotes the sum of relative contemporaneous effects and the lagged effects estimated using equation (8),
which is

∑k
τ=0βτ/benchmark; for example, the first dot in each figure denotes the relative effect of today’s and yesterday’s pollution.
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where priceijtr is the average price (incorporating flight and train) of trips
from city i to city j on date t in the reservation window r. We use the
marginal rate of substitution between the air-quality difference and
ticket price as the measure of WTP, which is − α1

α2 from the reduced-form
analysis. The underlying assumption is that price is not correlated with
the error term (εijt) after controlling for γim, θjm, δij and ϕt .

Nevertheless, the price would be positively correlated with the
number of trips in the city-pair-date cell, because of the demand-side
shock, which will lead to a rather smaller absolute value of α2. Our es-
timates for the coefficient of price would thus have an upper bias from
the actual value, and this problem is more severe for trips leaving in two
to seven days. To mitigate this concern, we instrument the price from the
supply-side variation, that is, the number of flights and trains available
between the city pair on the reservation date, for each city-pair-
reservation-date cell.27 The overall average price of a trip incorporates
both train and airline ticket prices, and the average price reflects the
substitution between trips by train and airline. The price of train tickets
between two cities is relatively stable over time and has variations be-
tween high-speed trains and normal trains, and first-class and second-
class. The price of airline tickets is determined by the market in time;
however, it is also affected by the availability of trains because of the
competition effect (Fang et al., 2020; Zhang et al., 2019). Thus, the
overall average price is correlated with the change in the number of
available trains and the number of available flights even after

controlling for city-pair fixed effects, which meets the relevance condi-
tion. In addition, the number of trains and flights on a particular date for
a given city pair is planned by the Ministry of Railway and the airlines.
Although airline companies consider the demand side when arranging
flights, the arrangements are usually based on historical data in a
broader date range. This channel would be absorbed by city-pair fixed
effects and city-month fixed effects. Moreover, any demand shock within
the multi-level fixed effects that the flight company could not anticipate
when arranging flights doesn’t invalidate the IV’s exogenous condition.
Overall, we believe the variation on the supply side across dates within
the city pair would be a valid IV for the price.

Table 9 reports the 2SLS estimates in Panel A and OLS estimates in
Panel B, respectively. The OLS estimation shows the average WTP of an
individual departing within one day (2–7 days) is 0.14 (0.31) yuan for a
one-unit improvement in AQI.28 That the WTP for trips departing in a
longer period is larger contradicts the common sense, as people would
pay more for urgent trips. The reason is that the price in longer periods
has a larger variation and stronger correlation with unobservable de-
mand shock. We further use instrument variables to predict the AQI gap
and price together in the first stage. As expected, the coefficient of price
increases after exploiting IVs for price. The Sanderson and Windmeijer
(2016) first-stage F statistics for each of the endogenous variables are
presented in Table 9 and are much larger than conventionally acceptable
thresholds, which reject the null of weak instruments on the two
endogenous variables. The 2SLS estimation shows that an individual
who departs within one day (2–7 days), on average, is willing to pay

Table 9
Willingness to pay.

(1) (2) (3) (4)

0–1 days 2–7 days

Panel A: 2SLS
1st stage AQI difference Price AQI difference Price
Upwind AQI difference 1.687*** 0.065*** 1.663*** 0.030**

(0.110) (0.020) (0.112) (0.013)
# of trains available − 0.001 − 1.649*** 0.009 − 2.055***

(0.008) (0.226) (0.009) (0.256)
# of flights available − 0.003 25.393*** − 0.006 20.313***

(0.030) (4.088) (0.028) (2.932)
2nd stage Dependent variable: Ratio of ticket bookings
AQI difference 0.041*** 0.064***

(0.007) (0.016)
Price − 0.133 − 0.644***

(0.095) (0.196)
Willingness to pay (Yuan) 0.31 0.10
First-stage Sanderson-Windmeijer F-test:
AQI difference 139.61 129.99
p-value 0.000 0.000

Price 40.05 46.38
p-value 0.000 0.000

Kleibergen-Paap (KP) F statistic 25.96 30.29
Panel B: OLS Dependent variable: Ratio of ticket bookings
AQI difference 0.002 0.011***

(0.002) (0.004)
Price − 0.016*** − 0.037***

(0.004) (0.006)
Willingness to pay (Yuan) 0.14 0.31
Observations 24,806,951 22,063,482
CityPair FE Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
Destination-Year-Month FE Yes Yes Yes Yes
Origin-Year-Month FE Yes Yes Yes Yes

Notes. This table presents estimates of willingness to pay for clean air. Panels A and B report the 2SLS and OLS estimates, respectively. Price is the overall average price
of traveling between a city pair. All regressions control for linear and quadratic forms of weather differences between origin and destination cities, consisting of
temperature, wind speed, precipitation, sunshine, relative humidity, and atmospheric pressure. Benchmark is the average of the dependent variable, and theWillingness
to pay is the absolute value of the ratio between the estimated coefficient of AQI difference and that of price. Standard errors in parentheses are robustly two-way
clustered at the origin- and destination-city level. *p < 0.10, **p < 0.05, ***p < 0.01.

27 In particular, we use the number of distinct trains/flights on the departure
date. For example, if flight CX983 from city i to city j makes three trips in 2–7
days, we only treat it as one choice in 2–7 days. 28 The WTP estimated using PM2.5 is similar to AQI.
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0.31 (0.10) yuan for a one-unit improvement in AQI. In other words, an
individual would be willing to pay 0.31 yuan for each unit improvement
in AQI (avoiding one unit AQI) within one day, and 0.10 yuan for each
unit improvement in AQI for avoiding pollution within 2–7 days.
Regarding the IV results, the WTP for urgent trips is larger than that of
trips departing in a longer period. What is the magnitude of WTP for the
short-term pollution avoidance? In our data, an individual travels 3.61
times per year, on average, which means an average individual leaving
in zero to one days (2–7 days) is willing to pay 1.12 (0.36) yuan annually
for a one-unit improvement in AQI. Therefore, the WTP of a household
of two to three is about 2.24–3.36 (0.72–1.08) yuan for one unit of AQI
in a trip leaving in zero to one days (2–7 days), respectively. Our esti-
mates are smaller than the WTP estimated from air purifier purchases by
Ito and Zhang (2020) and much smaller than the WTP estimated from
long-term migration by Bayer et al. (2009) and Freeman et al. (2019),29

which is reasonable because air purifiers are durable goods and migra-
tion is a long-term decision, whereas travel is transient consumption. In
addition, we use their final decisions (net of cancellation) instead of the
initial decisions to measure WTP. If using the initial decisions, the WTP
would be larger. Our estimate is likely to be a lower bound because we
only consider the ticket costs of the pollution-induced trip and do not
incorporate other possible costs such as accommodation costs. Our
estimation of WTP is not a substitute estimation for Ito and Zhang (2020)
but rather a complementation. Besides the preference for better indoor
air quality, we want to emphasize that people may also need short trips
to enjoy better outdoor air quality, which is mainly for mental health.

6. Conclusion

In this paper, we study how air-pollution differences can affect the
short-term travel flow between cities. Utilizing unique data from one of
the largest flight and train ticket bookings providers in China, we can
estimate how the travel flows change with the air pollution on the dates
that the travel decisions are made, and investigate how the effects vary
with demographic characteristics such as age. We find that a 50-unit

difference in AQI between a city pair leads the travel flow to the
cleaner city to increase by 1.30%–1.33%. Additionally, middle-aged
people are more responsive to the air-pollution difference than chil-
dren and the old. Our analysis suggests people are more likely to travel
by train to intra-province cities with more tourist attractions.

This paper also sheds light on the behavioral factors that play a role
in the decision-making process, by showing an increase in the refund
rate of those pollution-induced ticket bookings. Our estimates on the
marginal rate of substitution between air-quality difference and ticket
price also add to a growing body of work on measuring willingness to
pay for clean air.

These pollution-induced trips can bring indirect costs, such as
additional greenhouse gas emissions and loss of tourism, which may
offset part of the health benefits. We try to calculate the additional
greenhouse gas emissions due to the pollution-induced trips following
Lin et al. (2021). The detailed calculation steps are described in
Appendix A. The back-of-envelope calculation shows the increased
travel due to air pollution leads to an 8,292.45-ton increase in CO2e
annually—we need to plant 460,692–2,073,114 more trees to absorb
these additional GHG emissions.30
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Appendix

A. Greenhouse Gas Emission

Following Lin et al. (2021), we first calculate the greenhouse gas emission (GHG) by different transportation modes, namely, train and airline, for
each city pair on each day and then aggregate. Using the estimates from the nonlinear specification in Table A.2, the annual GHG is calculated as
follows:

GHS annual=
1
3
∑

ij,t

∑

h

∑6

x=2
δh×Disij,h×Numijt ×

βi × D[AQI difference xtilex = 1]
Benchmarkh

(10)

where h denotes transportation mode, that is, high-speed railway, traditional train, and airplane. The emission factor (δh) for high-speed railway,
traditional train, and airplane are 0.04, 0.006, 0.018 kg CO2e per passenger*km, respectively. For train, the distances between a city pair by
transportation mode (Disij,h) are imputed using the train ticket price31; for airplane, the distance is calculated as the distance between two cities’
airports. D[AQI difference xtilex= 1] denotes the dummy when the AQI difference is in xtile x; Numijt is the number of people traveling from city i to
city j on date t. Benchmarkh is the mean value of the dependent variable in equation (1) in the group (AQI_difference<35) for each transportationmode
h. Because our sample is from 2017 to 2019, we derive the annual GHG emission by multiplying 1

3.

29 Ito and Zhang (2020) estimate that a household’s annualWTP for 1 μg/m3 improvement of PM10 is about $1.34 (about 9 yuan). Bayer et al. (2009) estimate that
the median household in U.S. would pay $149–$185 for a one-unit reduction in PM10 concentrations, in constant 1982–1984 dollars; Freeman et al. (2019) estimate
that a median household in China is willing to pay $21.70 for a one-unit decline in annual PM2.5 concentration.
30 According to the statistics released by National Forestry and Grassland Administration, a tree can absorb and store 4–18 kg of CO2 per year.
31 The average price for traditional train is 0.31 yuan/km, and the average price for high-speed railway is 0.46 yuan/km.
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Fig. A.1. Distribution of AQI Difference
Notes. This figure shows the distribution of the AQI difference. The dotted lines denote the 1st, 10th, 50th, 90th, and 99th percentiles of AQI difference, respectively.

Fig. A.2. Correlation between the Endogenous Variable and the IV

Fig. A.3. Heterogeneity in Age, by Train and Airplane
Notes. This figure plots the relative effects and the 95% confidence intervals for different age cohorts booking train or airline tickets. The figure on the left (right)
shows the results for tickets booked to depart within a day (2–7 days). Each dot denotes the relative effect (%) of a 50-unit increase in the AQI gap, which is
calculated by dividing the estimated coefficient (reported in Table A.7) of the AQI difference by the benchmark value of the dependent variable and then multiplying
by 50.
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Fig. A.4. Lagged Effects of AQI Difference
Notes. This figure plots the relative lagged effects of the air-pollution gap, denoted by {βτ}

7
i=1/benchmark*50, as estimated using the flexible distributed lag model in

equation (8). Lag effects indicate that booking decisions respond to pollution gaps in the past. Panel (a) and (b) present the effects for all trips, while Panels (c)–(d)
and Panels (e)–(f) respectively present the effects for train and flight trips. The three subfigures in the left depict the effects on trips departing within 0–1 days, while
the three subfigures in the right illustrate the effects on trips departing within 2–7 days. Each dot denotes the estimated relative effect, with the accompanying blue
area indicating the 95% confidence interval. The x-axis corresponds to the number of days preceding the present day; for example, x = 1 refers to yesterday, and x = 2
denotes two days before the current date.
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Fig. A.5. Lead Effects of AQI Difference
Notes. This figure plots the relative lead effects of the air-pollution gap, denoted by {βτ}

− 1
i=− 7/benchmark*50, as estimated using the flexible distributed lag model in

equation (8). Leads effects indicate that current booking decisions respond to future pollution gaps. Panel (a) and (b) present the effects for all trips, while Panels (c)–
(d) and Panels (e)–(f) respectively present the effects for train and flight trips. The three subfigures in the left depict the effects on trips departing within 0–1 days,
while the three subfigures in the right illustrate the effects on trips departing within 2–7 days. Each dot denotes the estimated relative effect, with the accompanying
blue area indicating the 95% confidence interval. The x-axis corresponds to the number of days after the current day; for example, x = 1 refers to one day after the
booking date, and x = 2 denotes two days after the current date.

Table A.1
Platform Choice during the Shopping Festival

(1) (2) (3) (4) (5) (6)

Ratio of ticket bookings

All trips leaving in Train trips leaving in Flight trips leaving in
0–1 days 2–7 days 0–1 days 2–7 days 0–1 days 2–7 days

AQI difference 0.036*** 0.042*** 0.038*** 0.040** 0.081* 0.050***
(0.006) (0.013) (0.008) (0.017) (0.042) (0.018)

AQI difference*the week of 11.11 − 0.006 − 0.004 − 0.019 0.025 0.190 0.022
(0.014) (0.022) (0.017) (0.034) (0.180) (0.049)

Observations 24,806,951 22,063,482 22,292,946 18,608,699 5,355,666 6,541,710
Benchmark 139.582 157.03 149.35 179.00 372.12 304.99
Relative effect of AQI difference (%) 1.30 1.34 1.27 1.13 1.09 0.82
KP F stat. 114.9 109.1 117.3 111.5 73.43 76.49
CityPair FE Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes
Destination-Year-Month FE Yes Yes Yes Yes Yes Yes
Origin-Year-Month FE Yes Yes Yes Yes Yes Yes
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Notes. This table presents indirect test of the platform choice independence assumption by utilizing the shock of Double Eleven. AQI difference*the week of 11.11 is
instrumented by the interaction of upwind pollution difference and the Double-Eleven week. We include all the pairwise terms. For each column, the dependent
variable is the probability of individuals from an origin city i choosing to travel to destination city j on reservation date t in a specific booking period. Columns (1)–(2),
(3)–(4), and (5)–(6) report the results for all, train, and airline ticket bookings, respectively. Columns (1), (3), and (5) show the results for tickets booked to depart
within a day, and columns (2), (4), and (6) report the results for tickets booked to depart in 2–7 days. All regressions control for linear and quadratic forms of weather
differences between origin and destination cities, consisting of temperature, wind speed, precipitation, sunshine, relative humidity, and atmospheric pressure.
Benchmark is the average of the dependent variable, and the relative effect (%) is the ratio of the estimated coefficient and benchmark, multiplied by 50. Standard errors
in parentheses are robustly clustered at the origin- and destination-city level. *p < 0.10, **p < 0.05, ***p < 0.01.

Table A.2
Non-linearity

(1) (2) (3) (4) (5) (6)

Ratio of ticket bookings

All trips leaving in Train trips leaving in Flight trips leaving in
0–1 days 2–7 days 0–1 days 2–7 days 0–1 days 2–7 days

[35, 50) 0.320 0.931** 0.280 1.161** 2.531** 1.763
(0.267) (0.393) (0.311) (0.550) (1.249) (1.106)

[50, 75) 1.912*** 3.016*** 2.070*** 3.872*** 0.807 1.963**
(0.467) (0.585) (0.535) (0.810) (1.339) (0.910)

[75, 150) 5.431*** 5.159*** 6.076*** 6.553*** 3.918* 4.197***
(0.816) (0.838) (0.902) (1.110) (2.246) (1.179)

[150, 250) 9.541*** 6.744*** 11.404*** 8.752*** 6.419** 4.618**
(1.255) (1.158) (1.465) (1.623) (3.111) (2.025)

[250) 14.416*** 7.448*** 22.259*** 10.676*** − 0.968 − 0.068
(2.118) (1.654) (5.316) (1.591) (3.617) (2.654)

Observations 24,806,951 22,063,482 22,292,946 18,608,699 5,355,666 6,541,710
R-squared 0.831 0.694 0.835 0.666 0.744 0.796
Benchmark 150.546 166.052 160.770 189.377 386.784 315.350
Relative effect (%) 9.576 4.485 13.845 5.638 − 0.250 − 0.022
CityPair FE Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes
Destination-Year-Month FE Yes Yes Yes Yes Yes Yes
Origin-Year-Month FE Yes Yes Yes Yes Yes Yes

Notes. This table presents the nonlinear impact of air pollution on travel decisions. We decompose continuous AQI into six bins. For each column, the dependent
variable is the probability of individuals from an origin city i choosing to travel to destination city j on reservation date t in a specific booking period. Columns (1)–(2),
(3)–(4), and (5)–(6) report the results for all, train, and airline ticket bookings respectively. Columns (1), (3), and (5) show the results for tickets booked to depart
within a day, and columns (2), (4), and (6) report the results for tickets booked to depart in 2–7 days. All regressions control for linear and quadratic forms of weather
differences between origin and destination cities, consisting of temperature, wind speed, precipitation, sunshine, relative humidity, and atmospheric pressure.
Benchmark is the average of the dependent variable, and the relative effect (%) is the ratio of the estimated coefficient of the last bin and benchmark, multiplied by 50.
Standard errors in parentheses are robustly two-way clustered at the origin- and destination-city level. *p < 0.10, **p < 0.05, ***p < 0.01.

Table A.3
Robustness – Std. Err. One-way Clustered at City-pair

(1) (2) (3) (4) (5) (6)

All trips leaving in Train trips leaving in Flight trips leaving in

0–1 days 2–7 days 0–1 days 2–7 days 0–1 days 2–7 days

Dependent variable: AQI difference
Panel A: 2SLS
1st stage
Upwind AQI difference 1.687*** 1.663*** 1.671*** 1.634*** 1.684*** 1.695***

(0.008) (0.008) (0.008) (0.008) (0.015) (0.014)
KP F stat. 46951 42952 43476 38361 12669 14280

Dependent variable: Ratio of ticket bookings
2nd stage
AQI difference 0.036*** 0.042*** 0.038*** 0.041*** 0.083*** 0.050***

(0.004) (0.005) (0.004) (0.006) (0.018) (0.011)
Benchmark 139.582 157.025 149.355 178.998 372.117 304.989
Relative effect (%) 1.301 1.334 1.263 1.134 1.117 0.828

Dependent variable: Ratio of ticket bookings
Panel B: OLS
AQI difference 0.002 0.011*** 0.004** 0.016*** 0.017** 0.007*

(0.001) (0.002) (0.002) (0.003) (0.007) (0.004)
Observations 24,806,951 22,063,482 22,292,946 18,608,699 5,355,666 6,541,710
Benchmark 139.582 157.025 149.355 178.998 372.117 304.989
Relative effect (%) 0.076 0.359 0.124 0.451 0.232 0.117
CityPair FE Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes
Destination-Year-Month FE Yes Yes Yes Yes Yes Yes
Origin-Year-Month FE Yes Yes Yes Yes Yes Yes
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Notes. This table presents the robustness check of clustering the standard errors at the city-pair level. Panel A reports the 2SLS estimates of equations (3) and (4), and
Panel B reports the OLS estimates of equation (1). For each column, the dependent variable is the probability of individuals from an origin city i choosing to travel to
destination city j on reservation date t in a specific booking period. Columns (1)–(2), (3)–(4), and (5)–(6) report the results for all, train, and airline ticket bookings,
respectively. Columns (1), (3), and (5) show the results for tickets booked to depart within a day, and columns (2), (4), and (6) report the results for tickets booked to
depart in 2–7 days. All regressions control for linear and quadratic forms of weather differences between origin and destination cities, consisting of temperature, wind
speed, precipitation, sunshine, relative humidity, and atmospheric pressure. Benchmark is the average of the dependent variable, and the relative effect (%) is the ratio
of the estimated coefficient and benchmark, multiplied by 50. Standard errors in parentheses are robustly clustered at the origin- and destination-city level. *p < 0.10,
**p < 0.05, ***p < 0.01.

Table A.4
Robustness – IV Radius 150 km–350km

(1) (2) (3) (4) (5) (6)

All trips leaving in Train trips leaving in Flight trips leaving in

0–1 days 2–7 days 0–1 days 2–7 days 0–1 days 2–7 days

Dependent variable: AQI difference
Panel A: 2SLS
1st stage
Upwind AQI difference 1.953*** 1.947*** 1.904*** 1.865*** 2.177*** 2.200***

(0.094) (0.100) (0.089) (0.094) (0.166) (0.161)
KP F stat. 435.3 379.9 458.6 393 172.9 186.9

Dependent variable: Ratio of ticket bookings
2nd stage
AQI difference 0.057*** 0.070*** 0.062*** 0.079*** 0.105*** 0.089***

(0.010) (0.020) (0.012) (0.025) (0.039) (0.031)
Benchmark 139.684 157.161 149.544 179.345 373.784 305.811
Relative effect (%) 2.045 2.212 2.067 2.208 1.409 1.453

Dependent variable: Ratio of ticket bookings
Panel B: OLS
AQI difference 0.002 0.011*** 0.004 0.016** 0.016 0.007**

(0.002) (0.004) (0.003) (0.007) (0.021) (0.003)
Benchmark 139.684 157.161 149.544 179.345 373.784 305.811
Relative effect (%) 0.073 0.363 0.122 0.456 0.215 0.115
Observations 24,970,659 22,224,759 22,438,128 18,736,009 5,391,423 6,598,087
CityPair FE Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes
Destination-Year-Month FE Yes Yes Yes Yes Yes Yes
Origin-Year-Month FE Yes Yes Yes Yes Yes Yes

Notes. This table presents the robustness check of changing the radius (within 150–350 km) used to construct the instrumental variable in Fig. 1. Panel A reports the
2SLS estimates of equations (3) and (4), and Panel B reports the OLS estimates of equation (1). For each column, the dependent variable is the probability of individuals
from an origin city i choosing to travel to destination city j on reservation date t in a specific booking period. Columns (1)–(2), (3)–(4), and (5)–(6) report the results for
all, train, and airline ticket bookings respectively. Columns (1), (3), and (5) show the results for tickets booked to depart within a day, and columns (2), (4), and (6)
report the results for tickets booked to depart in 2–7 days. All regressions control for linear and quadratic forms of weather differences between origin and destination
cities, consisting of temperature, wind speed, precipitation, sunshine, relative humidity, and atmospheric pressure. Benchmark is the average of the dependent variable,
and the relative effect (%) is the ratio of the estimated coefficient and benchmark, multiplied by 50. Standard errors in parentheses are robustly two-way clustered at the
origin- and destination-city level. *p < 0.10, **p < 0.05, ***p < 0.01.

Table A.5
Robustness – Using Different Denominators in the Dependent Variable.

(1) (2) (3) (4) (5) (6)

All trips leaving in Train trips leaving in Flight trips leaving in
0–1 days 2–7 days 0–1 days 2–7 days 0–1 days 2–7 days

Panel A: dependent variable: ratio2 ¼ num/daily average trips of city i over the sample period
AQI difference 0.037*** 0.044*** 0.037*** 0.043** 0.088* 0.049**

(0.006) (0.014) (0.008) (0.017) (0.045) (0.019)
Relative effect (%) 1.313 1.380 1.228 1.196 1.158 0.779
Observations 24,806,951 22,063,482 22,292,946 18,608,699 5,355,666 6,541,710
Panel B: dependent variable: ratio3 ¼ num/daily average of trips of city i in 2017
AQI difference 0.055*** 0.052** 0.053*** 0.051** 0.105** 0.066***

(0.012) (0.021) (0.014) (0.026) (0.049) (0.025)
Relative effect (%) 1.427 1.197 1.279 1.011 1.074 0.812
CityPair FE Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes
Destination-Year-Month FE Yes Yes Yes Yes Yes Yes
Origin-Year-Month FE Yes Yes Yes Yes Yes Yes

Notes. This table presents the robustness check using alternative dependent variables. Panel A reports the 2SLS estimates of using ratio2, with the denominator being
the average daily number of trips over the three-year period (2017–2019). Panel B presents the results using ratio3, with the denominator being the average daily
number of trips in the first year of the sample (2017). Columns (1)–(2), (3)–(4), and (5)–(6) report the results for all, train, and airline ticket bookings, respectively.
Columns (1), (3), and (5) show the results for tickets booked to depart within a day, and columns (2), (4), and (6) report the results for tickets booked to depart in 2–7
days. All regressions for control for linear and quadratic forms of weather differences between origin and destination cities, consisting of temperature, wind speed,
precipitation, sunshine, relative humidity, and atmospheric pressure. Benchmark is the average of the dependent variable, and the relative effect (%) is the ratio of the
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estimated coefficient and benchmark, multiplied by 50. Standard errors in parentheses are robustly two-way clustered at the origin- and destination-city level. *p <

0.10, **p < 0.05, ***p < 0.01.
Table A.6
Robustness – Logarithm of the Number of Trips as the Dependent Variable.

(1) (2) (3) (4) (5) (6)

All trips leaving in Train trips leaving in Flight trips leaving in

0–1 days 2–7 days 0–1 days 2–7 days 0–1 days 2–7 days

Dependent variable: AQI difference
Panel A: 2SLS
1st stage 1.68686*** 1.66296*** 1.67110*** 1.63394*** 1.68403*** 1.69526***
Upwind AQI difference (0.11038) (0.11197) (0.10788) (0.10816) (0.13892) (0.13716)
KP F stat. 233.6 220.6 240 228.2 146.9 152.8

Dependent variable: ln(number of trips)
2nd stage
AQI difference 0.00009*** 0.00008** 0.00009*** 0.00010** 0.00006* 0.00004

(0.00002) (0.00004) (0.00003) (0.00005) (0.00003) (0.00003)
Effect of a 50-unit increase in AQI difference (%) 0.471 0.414 0.475 0.491 0.296 0.193

Dependent variable: ln(number of trips)
Panel B: OLS
AQI difference 0.00001* 0.00003** 0.00001 0.00004* 0.00002 0.00001

(0.00001) (0.00001) (0.00001) (0.00002) (0.00001) (0.00001)
Effect of a 50-unit increase in AQI difference (%) 0.069 0.159 0.056 0.192 0.086 0.038
Observations 24,806,951 22,063,482 22,292,946 18,608,699 5,355,666 6,541,710
CityPair FE Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes
Destination-Year-Month FE Yes Yes Yes Yes Yes Yes
Origin-Year-Month FE Yes Yes Yes Yes Yes Yes

Notes. This table presents the robustness check of using the logarithm of the number of trips as an alternative dependent variable. Panel A reports the 2SLS estimates of
equations (3) and (4), and Panel B reports the OLS estimates of equation (1). Columns (1)–(2), (3)–(4), and (5)–(6) report the results for all, train, and airline ticket
bookings, respectively. Columns (1), (3), and (5) show the results for tickets booked to depart within a day, and columns (2), (4), and (6) report the results for tickets
booked to depart in 2–7 days. All regressions for control for linear and quadratic forms of weather differences between origin and destination cities, consisting of
temperature, wind speed, precipitation, sunshine, relative humidity, and atmospheric pressure. Effect of a 50-unit increase in AQI difference (%) is calculated using
(
eβ×50 − 1

)
× 100. Standard errors in parentheses are robustly two-way clustered at the origin- and destination-city level. *p < 0.10, **p < 0.05, ***p < 0.01.

Table A.7
Heterogeneity in Age.

(1) (2) (3) (4) (5) (6) (7) (8)

Ratio of ticket bookings

0–1 days 2–7 days

0–18 y/o 19–35 y/o 36–55 y/o >55 y/o 0–18 y/o 19–35 y/o 36–55 y/o >55 y/o

Panel A: All
AQI difference − 0.022 0.046*** 0.047*** 0.024* − 0.028 0.053*** 0.050*** 0.040**

(0.053) (0.009) (0.007) (0.015) (0.067) (0.019) (0.012) (0.017)
Observations 5,321,255 19,759,268 17,932,479 7,301,197 5,730,427 17,354,573 15,120,266 7,510,598
Benchmark 646.891 175.189 193.132 472.761 600.134 199.593 229.124 459.893
Relative effect (%) − 0.170 1.321 1.205 0.255 − 0.235 1.330 1.101 0.436
KP F stat. 136 212.6 207.4 160.9 142.5 200.7 198.5 169.3
Panel B: Train
AQI difference − 0.064 0.052*** 0.049*** 0.036 − 0.055 0.053** 0.056*** 0.046

(0.066) (0.012) (0.009) (0.025) (0.113) (0.025) (0.016) (0.028)
Observations 4,397,963 17,647,868 15,595,589 5,996,948 3,966,195 14,399,804 11,927,236 5,470,789
Benchmark 751.930 188.628 213.502 552.960 829.321 231.277 279.068 603.433
Relative effect (%) − 0.427 1.387 1.151 0.328 − 0.330 1.142 0.997 0.380
KP F stat. 133.5 218.2 212.2 159.7 134.9 209.2 205.1 165.3
Panel C: Flight
AQI difference 0.087 0.107** 0.076* − 0.036 − 0.021 0.084*** 0.038** 0.042

(0.136) (0.054) (0.042) (0.084) (0.065) (0.028) (0.018) (0.038)
Observations 1,270,091 4,232,763 4,309,267 1,893,607 2,325,456 5,259,480 5,275,835 2,898,440
Benchmark 1533.688 470.773 461.159 1037.135 844.299 378.248 377.572 682.838
Relative effect (%) 0.285 1.141 0.828 − 0.172 − 0.126 1.113 0.509 0.305
KP F stat. 119.2 143.9 147.7 141.4 129.9 147.9 153.8 148.5

CityPair FE Yes Yes Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes Yes Yes
Destination-Year-Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Origin-Year-Month FE Yes Yes Yes Yes Yes Yes Yes Yes

Notes. This table presents the heterogeneity in age by dividing the sample into four groups: 0–18, 19–35, 36–55, and more than 55 years old. Panels A, B, and C report
the 2SLS estimates of equations (3) and (4) for all, train, airline tickets respectively. For each column, the dependent variable is the probability of individuals from an
origin city i choosing to travel to destination city j on reservation date t in a specific booking period. Columns (1)–(2), (3)–(4), and (5)–(6) report the results for all,
train, and airline ticket bookings respectively. Columns (1)–(4) show the results for tickets booked to depart within a day, and columns (5)–(8) report the results for
tickets booked to depart in 2–7 days. All regressions control for linear and quadratic forms of weather differences between origin and destination city, consisting of
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temperature, wind speed, precipitation, sunshine, relative humidity, and atmospheric pressure. Benchmark is the average of the dependent variable, and the relative
effect (%) is the ratio of the estimated coefficient and benchmark, multiplied by 50. Standard errors in parentheses are robustly two-way clustered at the origin- and
destination-city level. *p < 0.10, **p < 0.05, ***p < 0.01.

Table A.8
Heterogeneity – Intra-province and Inter-province Trips.

(1) (2) (3) (4)

Ratio of ticket bookings

Train Flight

Inter-prov. Intra-prov. Inter-prov. Intra-prov.

Panel A: 0–1 days
AQI difference 0.013*** 0.737*** 0.076* 0.351

(0.004) (0.204) (0.046) (0.451)
Observations 19,103,145 3,189,794 5,072,038 283,078
Benchmark 64.606 656.901 331.814 1090.622
Relative effect (%) 0.995 5.608 1.143 1.608
KP F stat. 242.1 130.8 144.2 72.99
Coefficient difference − 0.724*** − 0.275***
p-value 0.000 0.000

Panel B: 2–7 days
AQI difference 0.025*** 0.542 0.041** 0.422

(0.007) (0.409) (0.018) (0.418)
Observations 15,815,557 2,793,129 6,217,671 323,707
Benchmark 104.594 600.281 280.467 771.005
Relative effect (%) 1.176 4.513 0.729 2.737
KP F stat. 232.4 122 150.4 70.76
Coefficient difference − 0.517*** − 0.381***
p-value 0.000 0.000

CityPair FE Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
Destination-Year-Month FE Yes Yes Yes Yes
Origin-Year-Month FE Yes Yes Yes Yes

Notes. This table presents heterogeneity in destination cities. Panels A and B report the 2SLS estimates of equations (3) and (4) for ticket
bookings departing within a day and 2–7 days. For each column, the dependent variable is the probability of individuals from an origin city i
choosing to travel to destination city j on reservation date t in a specific booking period. Columns (1)–(2) and (3)–(4) report the results for
train and airline ticket bookings, respectively. Columns (1) and (3) show the results for intra-province tickets and columns (2) and (4) report
the results for inter-province tickets. All regressions control for linear and quadratic forms of weather differences between origin and
destination cities, consisting of temperature, wind speed, precipitation, sunshine, relative humidity, and atmospheric pressure. Benchmark is
the average of the dependent variable, and the relative effect (%) is the ratio of the estimated coefficient and benchmark, multiplied by 50.
Standard errors in parentheses are robustly two-way clustered at the origin- and destination-city level. The Fisher’s permutation test is used to
test the statistical significance of the difference between two groups of the estimator. The p-values are calculated using bootstrapping
procedure.

Table A.9
Heterogeneity – 4A + Attractions (Train).

(1) (2) (3) (4) (5) (6)

Intra-province Inter-province

Panel A: 0–1 days
AQI difference 0.084 0.284 1.265*** 0.006*** 0.008*** 0.014***

(0.062) (0.2) (0.351) (0.002) (0.003) (0.006)
Observations 892,589 1,140,858 1,156,300 3,738,233 5,559,829 9,786,149
Benchmark 270.563 535.905 1074.528 34.158 41.545 89.304
Relative effect (%) 1.556 2.652 5.887 0.898 0.919 0.794
KP F stat. 60.44 137.4 67.83 249 214.7 161.8
Panel B: 2–7 days
AQI difference 0.039 0.119 1.132 0.009* 0.005 0.029***

(0.093) (0.33) (0.74) (0.005) (0.004) (0.011)
Observations 745,434 990,707 1,056,906 2,810,227 4,440,552 8,542,504
Benchmark 223.372 478.174 980.527 43.873 65.530 144.729
Relative effect (%) 0.877 1.241 5.774 1.067 0.392 0.998
KP F stat. 55.40 128.9 64.94 229.1 183 167.7
# of 4 A + attractions (xtile) 1 2 3 1 2 3
CityPair FE Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes
Destination-Year-Month FE Yes Yes Yes Yes Yes Yes
Origin-Year-Month FE Yes Yes Yes Yes Yes Yes

Notes. This table further presents heterogeneity in destination cities for train tickets. Panel A and B report the 2SLS estimates of equations (3) and (4) for ticket bookings
departing within 0–1 days and 2–7 days. For each column, the dependent variable is the probability of individuals from an origin city i choosing to travel to destination
city j on reservation date t in a specific booking period. Columns (1)–(3) show the results for intra-province tickets and columns (2)–(4) report the results for inter-
province tickets. We divide the sample into three groups (xtiles) according to the number of 4 A-plus tourist attractions—a larger xtile means more 4 A-plus
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tourist attractions in the destination city. All regressions control linear and quadratic forms of weather difference between origin and destination city, consisting of
temperature, wind speed, precipitation, sunshine, relative humidity, and atmospheric pressure. Benchmark is the average of the dependent variable, and the relative
effect (%) is the ratio of the estimated coefficient and benchmark, multiplied by 50. Standard errors in parentheses are robustly two-way clustered at the origin- and
destination-city level. *p < 0.10, **p < 0.05, ***p < 0.01.

Table A.10
The Role of Pollution Forecast on Travel Flows.

(1) (2) (3) (4) (5) (6)

trips leaving in 0–1 days (using 24 h forecast) trips leaving in 2–7 days (using 72 h forecast)

Panel A: 2SLS
AQI difference − 0.303 − 0.306 − 0.299 0.081 0.081 0.081

(0.261) (0.260) (0.260) (0.140) (0.140) (0.140)
AQI_origin_fcst_mean 0.524* 0.182*

(0.274) (0.100)
AQI_destin_fcst_mean − 0.085 0.058

(0.192) (0.208)
AQI_origin_fcst_min 0.538* 0.194*

(0.275) (0.102)
AQI_destin_fcst_min − 0.090 0.041

(0.194) (0.216)
AQI_origin_fcst_max 0.506* 0.170*

(0.269) (0.099)
AQI_destin_fcst_max − 0.077 0.073

(0.187) (0.200)
KP F stat. 226.4 222.7 229.7 256.5 256.3 256.5
Panel B: OLS
AQI difference 0.061 0.060 0.063 0.149** 0.148* 0.149**

(0.055) (0.052) (0.057) (0.074) (0.074) (0.074)
AQI_origin_fcst_mean 0.280** 0.178*

(0.136) (0.098)
AQI_destin_fcst_mean 0.160 0.063

(0.121) (0.205)
AQI_origin_fcst_min 0.289** 0.189*

(0.135) (0.099)
AQI_destin_fcst_min 0.160 0.046

(0.124) (0.213)
AQI_origin_fcst_max 0.269* 0.166*

(0.136) (0.097)
AQI_destin_fcst_max 0.159 0.078

(0.118) (0.196)
Observations 252,772 252,772 252,772 252,275 252,275 252,275
CityPair FE Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes
Destin-YearMonth FE Yes Yes Yes Yes Yes Yes
Origin-YearMonth FE Yes Yes Yes Yes Yes Yes

Notes. This table presents the role of pollution forecasts using a small sample of data collected over five months, from September 2023 to January 2024, for 43 cities.
Column (1)–(3) present the results for trips leaving in 0–1 days, and columns (4)–(6) presents the results for trips leaving in 2–7 days. For travels departing within a 0–1
day window, we utilize the 24-h AQI forecast, and for travels departing in 2–7 days, we use the 72-h AQI forecast. All regressions control for linear and quadratic forms
of weather differences between origin and destination cities, consisting of temperature, wind speed, precipitation, sunshine, relative humidity, and atmospheric
pressure. Standard errors in parentheses are robustly two-way clustered at the origin- and destination-city level.
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