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In this study we investigate disguised pollution by industrial firms in China. We find that sulfur dioxide
(SO-,) readings increase by 10.8% in air pollution monitoring stations four hours after sunset in high fac-
tory density areas, controlling for station-year, date, and city-hour fixed effects. Physical inspections by
the Ministry of Environmental Protection may only temporarily reduce disguised pollution, suggesting
that reliance on physical inspections to enforce regulations is ineffective if firms can shift production
activities to non-daylight hours. We show that direct monitoring, as is done with some large polluters
in China, can prevent this and should be cost-effective to extend to all industrial polluters.
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1. Introduction

Firms will go to great lengths to circumvent regulatory over-
sight as regulatory compliance is costly and subject to pressure
from multiple stakeholders (Henriques and Sadorsky, 1996). In this
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paper, we show that some Chinese firms, under cover of darkness,
emit increased amounts of sulfur dioxide (SO,).! There are two rea-
sons why firms might increase non-compliant production, and
thereby pollution, outside of daylight hours. First, emissions are vis-
ible in the daytime, especially sulfide compounds with a yellowish
color, so nearby residents may complain to their local environmental
bureaus if they see the smoke, and inspectors from the local environ-
mental bureaus can impose fines on the firms if they can confirm
that illegal emissions are occurring. However, emissions at night
are much less visible and inspectors are less likely to be on duty at
night, implying a lower probability of complaints, detection, govern-
mental inspection, and fines. Second, desulfurization is very costly.
Variable costs including electricity, water, desulfurizer, and steam
are a few times higher than the annual depreciation costs of the
equipment (Wu et al.,, 2015). Therefore, firms have an incentive to

1 Anecdotal evidence of firms’ disguised pollution at night has been reported in the
news (for example, https://www.chinanews.com/gn/2015/03-10/7117032.shtml (ac-
cessed on 20 Dec 2022); https://www.chinacourt.org/article/detail/2013/07/id/
1039669.shtml (accessed on 20 Dec 2022), and even in the Report on the Work of
the Government by Premier Li Kegiang (https://www.gov.cn/guowuyuan/2015-03/
16/content_2835101.htm, accessed on 20 Dec 2022).
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shut down the desulfurization equipment at night when the chance
of this being detected is much lower.

Our investigation was prompted by two stylized facts. First, if
we take a snapshot of SO, pollution across all the 1,583 air pollu-
tion monitoring stations in China after controlling for time and
weather (Fig. A1), we find contrasting patterns in autumn and
winter (Oct-Apr), and spring and summer (Apr-Oct). During the
winter, SO, is higher in the north, while during the summer,
SO, is higher in the south. Second, if we plot the average readings
of SO, before and after sunset time at each station, we observe a
significant rise in SO, after sunset. However, this could be due to
various factors: operational practices, weather conditions, winter
heating, and firm manipulation of pollution emissions. SO, emis-
sion is also largely affected by the industrial structure of an area,
which in turn is driven by the economic make up of a city. In
addition, the increase in SO, may be driven by atmospheric con-
ditions instead of firms’ behavioral changes: sunlight can interact
with pollutants and facilitate secondary chemical effects. Lastly,
lower temperatures after sunset may affect the dissipation of
pollutants.

To make a causal argument of nightfall and increased pollution,
we use the variation in sunset times across China and the hourly
recording of pollution levels across all 1,583 monitoring stations
from 2015 to 2017. These national monitoring stations are
installed in various locations in China and our data is the aggregate
of these stations. Not all stations are located near pollutant emit-
ting firms; approximately a quarter of them are located near
non-industrial areas. This variation allows us to compare the pollu-
tion readings in monitoring stations with high factory density in
the surrounding area and stations with low factory density in the
surrounding area, before and after sunset, giving us a clean
difference-in-differences analysis and supporting the causal argu-
ment for the intentional increase of pollution emissions under
the disguise of the night.

The thought experiment we have in mind requires that there
are two monitoring stations in the same city—one in the industrial
area and the other in the non-industrial area. After sunset, the
probability of inspection is lower, thus firms may shut down the
desulfurization equipment that lowers the SO, emissions to reduce
costs, and/or increase production activities that cause higher levels
of SO, emissions and thus increase profits. However, there is no
change in the emission levels in the non-industrial areas which
experience sunset at the same time. City-hour and station-year
fixed effects allow us to cleanly get to our experiment, which rules
out both time-variant (such as electricity prices) and time-
invariant city-level unobservables, as well as year-variant
station-level unobservables. In addition, we flexibly control for
the atmospheric conditions that may affect the dissipation of pol-
lutants before and after sunset, including precipitation, wind speed
and direction, temperature, dew point, daily range of temperature,
boundary layer height, and surface pressure.

We found that there is a 10.8% increase in SO, emission levels in
the four hours after sunset in comparison to the six hours before
sunset as measured by monitoring stations near the industrial
areas as opposed to stations near the residential areas, which
translates into an hourly difference of 6.3% before and after sunset.
Most importantly, our results are robust to different confounders,
including changes in atmospheric conditions post-sunset (such as
the change of the boundary layer height), changes in electricity
generation and electricity prices within a day, production shifts
within a day, winter heating, and traffic flows. Besides, we find that
the gap between the two groups gradually narrows around sunrise.
Considering the possibility that monitoring stations are likely to be
placed in relatively cleaner areas (Grainger et al., 2018), our esti-
mates on disguised pollution may be lower than what actually
occurs.
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Moreover, we find that the level of disguised pollution at night
varies with political factors such as political turnover and central
inspection. Disguised pollution is 54.0-61.9% higher in a half year
after the turnover of the municipal party secretary, compared to
periods before the turnover, and such effect is less pronounced if
the new party secretary has environmental governance experience.
We also show that inspections by the Ministry of Environmental
Protection (MEP) after 2014 may only decrease the disguised pol-
lution temporarily during MEP officials’ stay. Such activity reverts
to previous levels after the MEP officials leave the sites.” Finally, we
show that disguised pollution is inversely correlated with pressures
due to a local economic downturn. A one percentage decline in GDP
growth rate in the previous year increases the magnitude of dis-
guised pollution in the current year by 11.1-12.7%. Such findings
also support our argument that the effect is not due to atmospheric
conditions, otherwise it should not vary with political turnover, cen-
tral inspection, or local economic growth. Furthermore, we do not
find evidence that the firms that are deemed to be high polluters
and as a result have individual monitoring devices installed, increase
their emissions at night. However, we do find that firms in key
regions that are more strictly monitored are less likely to under-
report their emissions readings after sunset than firms in non-key
regions, though the magnitude of such difference is small.

This paper contributes to the current literature in four ways.
First, our paper adds to the discussion regarding the gaps between
regulation enforcement and actual pollution abatement. Specifi-
cally, we provide novel evidence for firms’ short-term strategic
actions in the context of point-source non-automated monitoring
and imperfect inspection by the regulators. There is also emerging
literature on the agencies’ evasive responses to environmental reg-
ulations. For example, Vollaard (2017) demonstrates evidence of
the illegal discharge of oil from shipping vessels under the cover
of darkness in the Dutch part of the North Sea. Additionally, Zou
(2021) documents increases in polluting activities during unmon-
itored times due to a “once-every-six-days” air quality monitoring
schedule under the federal Clean Air Act. Alexander and Schwandt
(2022) utilize emission-cheating diesel cars to study the impact of
car pollution on infant health. Our paper contributes to this stream
of literature by showing that without point-source level surveil-
lance technologies, these evasive behaviors could still occur even
if there is a nationwide network of automated monitoring systems.
Moreover, the intensity of evasive behaviors is associated with a
variety of socioeconomic factors such as local economic growth
pressure and political turnover.

Second, our paper contributes to empirical evidence in evaluat-
ing the effects of environmental inspections. Using the event study
approach, a large body of literature sheds light on the question of
whether inspections conducted by environmental regulators can
reduce plant emissions in the long run. For instance, Eckert
(2004) finds that in petroleum storage sites in Canada, inspections
can deter future violations but the effect is small. However,
Keohane et al. (2009) explore the case of the US electric power
industry and find that the threat of enforcement has a notable
effect on the firms’ emissions.® Furthermore, Hanna and Oliva
(2010) show that an inspection under the Clean Air Act can lead to
a decrease in plant emission by around 15%, and that this effect is
stronger for those industries having low abatement costs. Note that
most of the previous studies focus on firms’ subsequent response

2 Using the National Specially Monitored Firms (NSMF) Program implementation as
a quasi-experiment, Zhang et al. (2018a) also find that direct central supervision by
the MEP substantially reduced industrial water pollution by more than 26% in the
short term.

3 Similar findings are also demonstrated in Shimshack and Ward (2008), who show
that increased enforcement even causes over-compliance in the non-inspected firms.
Shimshack (2014) provides a detailed review of some recent studies focusing on the
effect of inspection and governmental enforcement on pollution.
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after an actual inspection in the long run, while we provide evidence
from a short run perspective that firms may also react to changes in
inspection probability within a day.

Third, this paper contributes to the literature on environmental
regulation policies in developing countries. Most of the existing envi-
ronmental regulation studies focus on North American and European
countries, while discussions in the context of the developing world
are relatively rare. However, because both inspection and compliance
are costly (He et al.,, 2020; Shimshack, 2014), and developing coun-
tries typically face higher pollution levels, tighter budget constraints,
and weaker law enforcement institutions (e.g., due to corruption), it
is important to understand how firms respond to different monitor-
ing tools in the developing world. For instance, Duflo et al. (2018)
examine the effects of different inspection policies on plant emis-
sions in India and find that targeted inspections have a much stron-
ger effect than random inspections. Our paper, however, shows that
in China, a continuous monitoring system is more effective than
inspections. This is also related to the discussions by Karplus et al.
(2018), which find a reduction of SO, emissions following the imple-
mentation of tougher national air emissions standards in coal power
plants being monitored by Continuous Emissions Monitoring Sys-
tems (CEMS). Our results further support their argument that moni-
toring practices with high-quality data are very important for
pollution abatement.

Finally, our paper is related to the work on using administrative
data and other new data sources to identify disguised behaviors.
Drawing upon data on pollution monitoring and pollution alerts,
Mu et al. (2021) find that local governments in the US strategically
skip air pollution monitoring in order to meet federal air quality
standards. Agarwal et al. (2020) identify disguised corruption from
credit card transaction data. Finer (2018) employs taxi data to
identify possible information leakage from Federal Reserve meet-
ings. Deng et al. (2015) infer the unreported income of government
officials from housing purchase data. Our paper is the first to
uncover firms’ pollution behavior under the cover of night, using
high-frequency station-level and firm-level monitoring data. From
the perspective of practical surveillance, our results also suggest
that a closer look into high-frequency station level monitoring data
could identify the areas that are worth stricter enforcement efforts.

The paper proceeds as follows. Section 2 introduces the back-
ground of interaction between industrial firms and regulators
related to evasive emission issues in China; Section 3 discusses
the data sources used in the analysis; Section 4 describes the iden-
tification strategies; Sections 5 and 6 present the main findings and
discussion; Section 7 concludes.

2. Background
2.1. Firm incentives to discharge SO, under the cover of darkness

Sulfur widely exists in industrial fuels, and the combustion of
such fuels inevitably results in the production of waste off-gases
containing a range of sulfur compounds. Among these, SO, is one
of the most concerning pollutants as it has been shown to cause
serious negative health issues. It is estimated that the industrial
sector accounts for the biggest share of sulfur dioxide emissions
in China. On the one hand, the concentration of SO, in the off-
gases largely depends on the sulfur content in different fuels,
which generally ranges from 1.5% to 4% (Sun et al., 2016). To deal
with this problem, in recent years the Chinese government has
adopted various policies to force or incentivize industrial firms,
particularly coal-fired power plants, to upgrade their boiler tech-
nologies or to enhance fuel standards. On the other hand, even
the most up-to-date commercially-used technologies could still
produce exhaust gases containing pollutants that easily exceed
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the regulatory levels. Therefore, the environmental regulators also
require the polluting firms to install end-of-pipe pollutant scrub-
bers, which are expected to significantly reduce pollutant concen-
trations in the discharges.

However, the installment of end-of-pipe pollutant scrubbers is
not cheap. More importantly, the operating costs of such equipment
are also not negligible. Karatepe (2000) provides a detailed compar-
ison of the economic costs of different flue gas desulfurization pro-
cesses, while Sun et al. (2016) introduce some new advanced
technologies that could be commercially applied. In general, there
are two major categories of desulfurization technologies based on
the mechanisms of sulfur dioxide removal: wet scrubbing and dry
scrubbing. Under these two process types, different sorbent materials
are used and most of them produce different final wastes that require
transport and storage. For instance, limestone and lime are the two
most popular sorbents to remove sulfur dioxide in industries, how-
ever, they are not regenerative and produce a substantial amount
of gypsum/lime sludge which is difficult for firms to dispose of, fur-
ther adding to the running costs of the scrubbers.

Since the end-of-pipe desulfurization scrubber is usually a piece
of stand-alone equipment that can be switched on and off by the
firms during the production process, the high operating costs of
such scrubbers incentivize firms to shut down the scrubbers in
some circumstances. In this case, the waste off-gases without
any pollutant removal process would appear very different to the
cleaner discharges. For example, besides the colorless sulfur diox-
ide, the combustion of coal also results in a variety of other sulfur
compounds that have a yellowish color, so that discharging the off-
gases from the chimneys directly could be easily spotted by regu-
lators. To circumvent potential inspections during the daytime, it
has been reported that many firms choose to shut down the scrub-
bers at night.*

2.2. Regulators’ reaction to the evasive emissions

To curb the massive SO, emissions seen in the 1990 s, China’s cen-
tral government implemented a number of policies and introduced
new instruments starting in 2001 (the beginning of its 10th Five-
year Plan), including market-based instruments, command-and-
control, and administrative instruments. These policy instruments
effectively reduced SO, emissions by 28% from 2001 to 2005, and a
further 14% from 2006 to 2010 (Schreifels et al., 2012).

Amidst the recent regulatory policies, two control measures are
deemed to directly influence firms’ pollution abatement behavior.
The first is the implementation of CEMS at the above-scale pol-
luters to collect real-time emission data. The CEMS, which is
installed in the chimney, is designed to be independent of the oper-
ation of scrubbers and can transmit real-time readings of three
major pollutants in end-of-pipe off-gases, including SO,, TSP, and
NO,, to the data center of the MEP. But CEMS has some limitations
that may dampen its effectiveness: first, the installment and main-
tenance costs are high, so it is currently only adopted by large
firms. Therefore, as the small- and medium-sized firms usually
have lower production and pollutant removal technologies, they
have strong incentives to disguise their polluting behavior. This
would imply that the low distribution of CEMS could have over-
looked an important group of targets; additionally, even though
ideally CEMS can have automated monitoring functions, firms
can still interfere with the operation of CEMS by various means.
The effectiveness of CEMS is closely related to the local regulatory
pressures. For example, Karplus et al. (2018) document a weak

4 There is anecdotal evidence that power plants have installed expensive desul-
furization equipment, but have not put it into use alongside their generating units
(see https://news.sina.com.cn/c/2006-05-23/03389936463.shtml, accessed on 20 Dec
2022).


https://news.sina.com.cn/c/2006%e2%80%9305-23/03389936463.shtml

S. Agarwal, Y. Han, Y. Qin et al.

association between the SO, measurements of coal power plants
reported from CEMS and the observation from satellite data in
key regions facing the toughest new emission standards, indicating
that the coal power plants may game the system with the MEP on
reported data quality when facing high regulatory pressures.’

The other regulatory measure that is taken to enforce firms’
abatement is inspection by local bureaus and the central govern-
ment. With the constraints of a limited workforce, it is impractical
for local environmental protection bureaus to send out surveil-
lance teams to cover all pollution hotspots within their jurisdic-
tions. Instead, local regulators often rely on reports of suspicious
environmental issues from local residents via a variety of channels
such as social media (e.g., Weibo, WeChat) or official online mes-
sage boards (e.g., “Message Board for Local Leaders”). After collect-
ing information from these sources, a team of officers will visit the
venue to collect evidence with pollutant detecting instruments or
to conduct an indoor production environment check. However,
there are serious weaknesses in this workflow: it relies heavily
on neighborhood alerts, and these are likely to be much less com-
mon in the nighttime. In addition, there is a time lag between
observing pollutant discharges and evidence collection, making it
difficult to catch offenders in the act.

After a wide search for anecdotal news and official documents
about local environmental protection authorities’ enforcement
practices, we have established two facts. First, local authorities rec-
ognize the existence of firms’ illegal discharge behavior. Second, as
a complement to the other measures such as CEMS monitoring or
regular surveillance on industrial sites, they conduct irregular
inspections at night.° Moreover, to strengthen the enforcement of
environmental protection law, the MEP conducted inspections
across all provinces in China from December 2015 to August 2017
in a few waves, thus setting in motion the first comprehensive cen-
tralized environmental inspection program in China. The inspection
team stayed in each province for one month to investigate pollution
issues in that province. More than 5,000 inspectors were dispatched
to local sites during this period.” It is reported that the MEP inspec-
tion teams also conducted nightly inspections, especially for notori-
ous polluting areas such as Hebei Province.® However, given the
large number of industrial firms in China, even thousands of inspec-
tors are not likely to be able to regularly cover all the polluting sites,
especially if the firms game the inspectors by disguising their pollut-
ing behavior, which is the study scope of this paper.

3. Data sources

We draw data from three sources. First, we use the hourly pol-
lution data from the 1,583 national monitoring stations in China
from January 2015 to December 2017.° The data reports hourly

5 Duflo et al. (2013) also find evidence of manipulation of reported data in the
status quo system in India, however, they show that the third-party auditors can
substantially improve the reliability of the audit reports.

6 See https://www.xinhuanet.com/politics/2016-12/05/c_1120053568.htm
(acessed on 25 Mar 2023) for an anecdotal example of the irregular inspection at
night.

7 See https://www.xinhuanet.com//2017-05/09/c_1120942953.htm (accessed on
20 Apr 2018).

8 See a news report on nightly inspection from https://www.chinanews.com.cn/sh/
2016/12-05/8083330.shtml (accessed on 20 Dec 2022).

9 Our data is downloaded from https://beijingair.sinaapp.com/, the data source of
which is the National Urban Air Quality Live Update Platform (https://106.37.208.
233:20035/). In addition to the pollutant measures, the National Urban Air Quality
Live Update Platform provides the geographic coordinates of each monitoring station.
We have compared our downloaded data with the historical data published by MEP.
They are consistent with each other. People may worry that firms may bribe the MEP
to forge the data in monitoring stations. This is captured by the station-day fixed
effect and will not bias our estimate as long as the data manipulation effort is not
correlated with sunset time, which is unlikely.
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readings of six pollutants, including SO, PM; 5, PM;o, NO,, CO, and
0s. In addition, an hourly air quality index (AQI) measure is avail-
able, which is a composite index of multiple pollutants. Fig. A2
shows the average hourly readings of SO, across all stations. Accord-
ing to the WHO standard, exposure to 20 pug/m> SO, or higher on a
24-hour average may lead to negative health consequences. How-
ever, large areas in China, especially Northern China, have an average
hourly SO, that is above 20 pg/m?>.

We focus on SO, rather than other pollutants for the following
reasons. The effect and amount of CO is confounded by vehicle
emissions, and industrial sites are likely to be located in areas with
a higher density of road networks and vehicles.'® Thus the increase
in CO may not be solely attributable to the disguised pollution of
industrial firms. We do not discuss NO, and Os in this paper because
the effect of sunset on these two pollutants is ambiguous: NO, and
NO can equilibrate within a few minutes (and react with O3) in
the presence of sunlight (Rohde and Muller, 2015). Given that our
pollutant data source measures NO, instead of NOy, it is not clear
whether the change in NO, is due to industrial emission, or the
change in chemical effects with other pollutants, such as Os after
sunset. Along the same lines, we do not discuss PM,s and PM;q
because they are not only emitted directly from construction sites,
dusty roads, and agricultural activities but are also formed in the
atmosphere through complex chemical reactions that interact with
sunlight (Zhang and Cao, 2015).

To understand the surroundings of each monitoring station, we
search all the points of interest (POIs) within a 3 km radius of each
station using AutoNavi Map.'' We then count the number of facto-
ries within 3 km of each monitoring station, and the number of fac-
tories involved in SO,-intensive industries, including production and
supply of electric power and heat power, metal-related industries,
raw chemical materials, chemical products, and petroleum process-
ing industries (Chen et al., 2018).'> We also merge the station-level
pollution data with the hourly weather conditions near the station,
including precipitation, wind speed, wind direction, dew point, tem-
perature, surface pressure, and boundary layer height."® Following

10 vehicle emissions may also contain some sulfur dioxide especially if fuel quality
is low. However, vehicle emissions will not bias our estimate as long as vehicle
emissions are not correlated with sunset time within a city. As far as we know, major
cities in China usually impose restrictions on the entry of heavy vehicles (such as
diesel trucks) in urban areas based on clock time (for instance, after 10pm and before
7am daily) instead of sunset time.

1 We identify the Points of Interest (POIs) near each monitoring station using
AutoNavi Map (https://www.autonavi.com/#/) APL It searches a 3 km radius around
each air quality monitor station and returns a list of the name and associated
coordinates that are labelled as “industrial firms”. The source code is available upon
request. The coordinates of the POIs are finally transferred to the WGS84 coordinate
system for geographical matching and computation.

12 We identify SO, intensive industries (available in appendix Table A.1 of Chen, Li
and Lu (2018)) by searching the names of the factories with the following keywords:
"huagong" (raw chemical materials and chemical products), "jinshu" (pressing of
ferrous metals), "dianli" (production and supply of electric power & heat power),
"yelian" (pressing of ferrous metals), "shiyou" (processing of petroleum), "shihua"
(processing of petroleum), "he"(pressing of nuclear fuel), and "mei" (non-metallic
mineral products).

13 Qur first weather dataset is from National Oceanic and Atmospheric Administra-
tion, which provides global hourly records at the monitor station level in their archive
(https://www.ncei.noaa.gov/data/global-hourly/). There are 386 stations in total with
valid hourly readings within China from 2015 to 2017. The dataset contains essential
descriptions of the monitor stations such as station id, station name, reported hour,
and longitude and latitude, which enable us to link the air quality data by time and
distance with the nearest air quality monitor station. Additionally, it provides rich
information on the hourly weather conditions including air temperature, wind speed,
dew point, and precipitation, etc. It is noted that for the stations which report the
readings every three hours, in order to merge with our hourly air quality data, we fill
the missing values by applying a linear interpolation. Our second weather dataset is
ERA5, from which we retrieve hourly boundary layer height and surface pressure
during 2015-2017. It provides hourly estimates of a large number of atmospheric,
land and oceanic climate variables. The data has a resolution of 0.25 degreesx0.25
degrees.
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the method suggested by Corripio (2003), we obtain the daily sunset
time based on latitude, longitude and date for each monitoring sta-
tion. We define the hour during which sunset happens as the sunset
hour. For example, if the sunset time is 4:15 pm, then the sunset
hour is from 4 pm to 5 pm. Then, 5-6 pm is defined as one hour after
sunset, 6-7 pm is defined as two hours after sunset, etc. Fig. A3
shows the sunset hours by longitudes in winter and summer.

Table 1 presents the summary statistics of the first and the last
quintile in terms of the average number of SO, factories. For mon-
itoring stations in the bottom 20%, on average, there is no SO,-
producing factory within a 3 km radius. However, for monitoring
stations at the top 20%, on average there are 3.21 SO,-producing
factories within a 3 km radius. Panel B provides the average and
standard deviation of pollutants and atmospheric conditions six
hours before and four hours after sunset for each group. From a
simple comparison of the raw data before and after sunset without
any regression adjustment, we observe an approximately 5%
decrease in SO, after sunset for both groups. In general, the atmo-
spheric conditions change similarly after sunset for stations at the
bottom 20% and top 20%, with lower temperatures, slower wind
speeds, higher dew temperatures, slightly more precipitation,
and lower boundary layer height after sunset.

Our second data source is from the high-frequency monitoring
data of 135 factories in Shijiazhuang, Qinhuangdao, and Tangshan
in Hebei Province, and 177 factories in Zhejiang Province in 2015.
The Continuous Emissions Monitoring Systems (CEMS) imple-
mented by the Ministry of Environmental Protection (MEP) involve
the installation of monitors in factories among key industrial sec-
tors that contribute most of the industrial pollution. The purpose
of establishing the CEMS is to facilitate better information disclo-
sure and promote public participation in pollution monitoring.
Firms that fail to comply with the CEMS monitoring practice incur
severe penalties such as suspension of new project approval, sus-
pension of environmental subsidies, and disqualification as gov-
ernment vendors.'* The 312 factories in our sample are a
comprehensive list in the cities covered by CEMS that monitors
major air pollutants, including SO,, Total Suspended Particles
(TSP), and Nitrogen Oxides (NOy).

Table 1 Panel C presents the summary statistics for the firm-
level analysis, reporting the hourly SO, and compliance rate before
and after sunset for firms covered by CEMS. Information on the
hourly emission of SO,, and on whether the emissions in a certain
hour are above the regulated threshold, is directly accessible from
the data. We use this to define a new outcome variable, firm com-
pliance, a dummy variable equal to one if the hourly observations
measured by CEMS are available and below the emission standard,
otherwise zero. We find the compliance rate of firms in non-key
regions that are less strictly monitored drops slightly after sunset,
whereas the compliance rate of firms in key regions rises slightly.
Additionally, a slight increase in SO, emissions is observed for
firms in non-key regions after sunset, whereas a slight decrease
is observed for firms in key regions.

Our third data source is from the Chinese political leader data-
base, which contains information on more than 6,000 Chinese pre-
fectural leaders (municipal party secretaries and mayors) who
have served in Chinese prefectural-level and county-level cities
since the 1990s. The dataset contains extensive information about
these leaders, including their age, education, and work experience
before the current appointment. The data also tracks the month
and year in which they took and/or left office. We do not distin-
guish the nature of the officials’ turnover, which means we always
code a city as having undergone a leadership turnover regardless of

4 More details are available in the official document: https://www.mee.gov.cn/
gkml/hbb/bgth/ 201305/W020130509639333101097.pdf (accessed on 20 Dec 2022).
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whether the former leader was retired, promoted, or laterally
moved. We then aggregate the leader-position-year-month-level
data into city-level data, which records the year-month of leaders’
turnover for each city. The officials’ turnover is widely distributed
through all months of the year. In our sample from 2015 to 2017,
174 cities experienced at least one turnover of party secretary,
and 189 cities experienced at least one change of mayor. On aver-
age, the party secretary of each city changed 0.72 times during the
sample period of 2015-2017, and the mayor changed 0.68 times.

4. Identification strategy

We study the effect of sunset on firms’ pollution behavior using
both station-level analysis and firm-level analysis. For station-level
analysis, we adopt a difference-in-differences setting with high
dimensional fixed effects. Specifically, we compare the SO, read-
ings in stations in the top 20% with stations in the bottom 20%
(in terms of both the density of factories overall and the density
of factories in SO, intensive industries), before and after sunset,
conditional on city-by-hour, station-by-year and date fixed effects
and weather variables. The regression equation is as follows:

P;; = pSunset;; x T; 4 dSunseti; + A x Wi, + iy + U, + da + Eir
(1)

where P;, denotes the pollution level (in log form) in station i,
time t; Sunset;, takes value 1 if time t in station i is after sunset,
otherwise 0; T; takes value 1 if station i belongs to the treatment
group, otherwise 0; W;, denotes a vector of atmospheric controls
for station i, time t, including precipitation, wind speed, wind
direction, temperature, dew point, daily range of temperature,
boundary layer height, and surface pressure; o;, stands for
station-by-year fixed effects to absorb the station characteristics
that change by year such as annual technology updates of monitor-
ing stations and economic growth of the city; p,., represents city-
by-hour fixed effects to capture transportation policy shifts and
electricity price changes; and J, denotes the date fixed effects to
capture common time trends. We use two-way robust clustered
standard errors at the city and date level. We restrict the sample
period to six hours before sunset, the sunset hour, and four hours
after sunset, from January 2015 to December 2017.

Coefficient g in Eq. (1) essentially captures the before-after dif-
ference of the average hourly increase in pollutants between the
treatment and control stations. The identification assumption
requires that the growth pattern of P;; in the control stations is
parallel to the ones in the treated stations before and after sunset
if disguised pollution is absent. We test pre-trends in the next sec-
tion. In addition to the hourly average difference, we also investi-
gate the cumulative effect in the post-sunset hours using an
event study design as follows:
P = Bi x Tiy x 1{SunsetHour;; = k}
ke {-6,-5,-4,-3,-2,

0,1,2,3,4}
+4 x Wi + me x 1{SunsetHour;; = K} + oy + lp, + 8a + &i¢

(2)

where l{SunsetHour,—_t = k} is a dummy variable that equals 1 if
SunsetHour;; = k, otherwise 0. SunsetHour;, refers to the hour rela-
tive to sunset time for station i, time t. In this event study, we use
the pollution level one hour before sunset time as the benchmark
period. The sample period is from six hours before sunset to four
hours after sunset for each treatment and control station. The rest
of the variables are defined the same as in Eq. (1).
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Panel A: Station Level

Bottom 20% Top 20%

mean sd min max mean sd min max
# of SO, factories 0 0 0 0 3.21 217 2 14
Sample size (# of stations) 310 119
Panel B: Station-Hour Level

[-6, sunset) [sunset, +4] [-6, sunset) [sunset, +4]

mean sd mean sd mean sd mean sd
SO, 19.58 31.66 18.11 29.59 21.21 33.68 20.17 30.52
Wind Speed (m/s) 30.01 19.01 23.41 16.55 33.06 19.74 27.15 19.49
Temperature (°C) 17.42 11.31 14.48 10.66 19.39 10.31 16.85 9.78
Dew Temperature (°C) 5.68 13.28 6.24 13.17 10.12 11.86 10.52 11.67
Precipitation (mm) 0.37 3.77 0.44 3.48 0.31 2.67 0.38 2.83
Wind Direction (8 h min, °) 127.11 95.87 130.75 97.84 116.83 92.97 117.50 91.68
Wind Direction (8 h max, °) 258.82 95.59 249.70 99.45 245.37 98.93 236.82 101.59
Boundary Layer Height (m) 1062.28 706.19 309.08 393.79 949.73 501.31 316.50 309.67
Surface Pressure (Pa) 92449.96 10783.29 92499.52 10768.31 99818.03 3463.54 99856.47 3456.18
Sample size 1,859,157 1,563,122 690,995 581,484
Panel C: Firm Level (312 firms)

Key Region (263 firms) Non-key Region (49 firms)

mean sd mean sd mean sd mean sd
Compliance Rate 0.947 0.22 0.950 0.22 0.967 0.18 0.963 0.19
SO, 77.01 190.01 76.32 164.04 86.76 177.76 87.65 179.42
Sample size 594,130 484914 104,970 87,703

NOTES: Panel A reports the average number of SO, factories within 3 km of each monitoring station at the bottom 20% and top 20%. Panel B reports the average pollutant
readings before and after sunset for stations of the two groups. In the main regressions, the bottom 20% stations are the control group, while the top 20% stations are the
treatment group. The sample period is from 2015 to 2017. Panel C reports the average of the hourly SO, and compliance rate before and after sunset for firms covered by the

CEMS system. The sample period for firm analysis is 2015.

As another specification for robustness, we also use continuous
treatment, namely the number of SO,-producing firms within a
given radius for each station i, to define the treatment intensity
of station i. In the continuous treatment setting, we utilize the full
sample of all stations to check the robustness of our results. The
econometric specification is as follows:

Py = ySunset;, x Num; + dSunsetis + A x Wir + iy + U, + d
+ 8,‘_[ (3)

where Num; is the number of SO, emitting firms within a given
radius of station i, y captures the marginal effect of one more
nearby dirty factories on the SO, concentration level after sunset.

To examine firms’ response around sunrise, we also conduct an
event study for sunrise as follows:

Py = By x Tix x 1{SunriseHour;; = k}
ke{-6,-5-4,-3,-2,
0,1,2,3,4}
+4 x Wi + m x 1{SunriseHour;; = k} + oy + U, + 8a + &i;

(4)

where l{SunriseHour,ﬂ_,t = k} is a dummy variable that equals 1 if
SunriseHour;, = k, otherwise 0. SunriseHour;, refers to the hour rel-
ative to sunrise time for station i, time t. In this event study, we use
the pollution level one hour before sunrise time as the benchmark
period. The sample period is from six hours before sunrise to four
hours after sunrise for each treatment and control station. The rest
of the variables are defined the same as in Eq. (1).

For firm-level analysis, we adopt a single difference research
design by comparing a firm’s pollution behavior before and after
sunset, conditional on high dimensional fixed effects as follows:

Py = nSunseti; + A x Wi + otir + ty + S5 + & (5)

where P;; denotes the SO, level (in log form) or the compliance
dummy in firm-unit i, time t;o;, stands for firm-by-unit-by-year
fixed effects; u, stands for date fixed effects; &, represents hour
fixed effects. The rest of the notations are the same as in Eq. (1).
In some specifications, we also interact Sunset;, with a dummy vari-
able indicating key regions monitored by the MEP to test the differ-
ential effects in key regions and other regions. Essentially,
captures the average change in P;; after sunset, conditional on
weather, firm-unit-year fixed effects, date fixed effects, and hour
fixed effects. We use two-way robust clustered standard errors at
the firm and date level. The sample period is the year 2015.

5. Main findings

Table 2 presents the main results for the station-level analysis
using both the full sample and a restricted sample. In the main
regressions, we define the treatment stations as those that are in
the top 20% in terms of both the total number of factories and
the number of factories in SO,-intensive industries. We define
the control stations as those that are in the bottom 20% for these
two criteria. This definition results in 119 treatment stations and
310 control stations in 192 cities across China. Fig. 1 shows the
spatial distribution of stations.

To preliminarily validate the comparability of our treatment
and control groups, we first plot the raw trends of SO, (in log form)
of the treatment and control groups before and after sunset, as
shown in Fig. 2. We can see that the changes in pollution levels
move parallel before sunset and start to deviate after sunset, even
without any regression adjustment.
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Table 2
Baseline - the effect of sunset on air pollution.
(1) (2) (3) (4) (5) (6)
VARIABLES Inso2 Inso2 Inso2 Inso2 Inso2 Inso2
Panel A: full sample
Treat*Sunset 0.021 0.041*** 0.054*** 0.043* 0.066*** 0.063***
(0.015) (0.015) (0.016) (0.022) (0.019) (0.018)
Observations 4,453,879 4,073,532 4,099,314 4,453,879 4,073,532 4,099,314
R-squared 0.437 0.463 0.469 0.459 0.482 0.487
Panel B: restricted sample (33 cities)
Treat*Sunset 0.066*** 0.067*** 0.061*** 0.060*** 0.053*** 0.051***
(0.019) (0.019) (0.018) (0.018) (0.017) (0.017)
Observations 1,177,169 1,134,821 1,144,133 1,177,169 1,134,821 1,144,133
R-squared 0.447 0.481 0.489 0.466 0.496 0.503
Atmospheric conditions Yes (bin) Yes (poly) Yes (bin) Yes (poly)
Date FE Yes Yes Yes Yes Yes Yes
Station-Year FE Yes Yes Yes Yes Yes Yes
City-Hour FE Yes Yes Yes
Cluster city date city date city date city date city date city date

NOTES: This table reports the regression results using the full sample in Panel A and the restricted sample in Panel B. Atmospheric conditions include precipitation, wind
speed, wind direction, temperature, dew point, daily range of temperature, boundary layer height, and surface pressure. Standard errors are robustly two-way clustered at

city and date levels. *P < 0.10;**P < 0.05;***P < 0.01. The sample period is 2015-2017.

® Treatment Group (119 stns)
® Control Group (310 stns)
[ Restricted Sample

/
1

Fig. 1. Distribution of treatment and control stations (full and restricted sample). We plot the distribution of monitoring stations in the control group and the treatment
group in this map. In the full sample, there are 119 treatment stations and 310 control stations in 192 cities across China. In the restricted sample represented by the cyan
areas, there are 57 treatment stations and 60 control stations in 33 cities. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

Table 2 Panel A presents our main analyses using the full sam-
ple. The analyses emphasize the importance of controlling city-
hour fixed effects and atmospheric conditions when using the full
sample. First, city-hour fixed effects allow us to utilize the varia-
tion within a city-hour cell. To capture transportation policy shifts
and electricity price changes, city-hour fixed effects are necessary,

especially for the full sample that covers a wide geographical area.
Columns 1 to 3 and columns 4 to 6 show the results without and
with controlling city-hour fixed effects, respectively. We can
observe from columns 4 to 6 in Panel A that the estimates are rel-
atively stable across different specifications after controlling for
city-hour fixed effects.
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Fig. 2. The raw trend of In(SO,) in the treatment and control groups. The figure presents the average level of In(SO,) aggregated by the treatment stations and control stations

six hours before and four hours after sunset without any regression adjustments.

Second, the transmission and diffusion of pollutants are related
to atmospheric conditions such as wind speed and temperature. To
capture the atmospheric changes after sunset as much as possible,
we flexibly controlled the bins (column 5) or polynomial forms
(column 6) of atmospheric conditions (wind direction, wind speed,
temperature, dew point temperature, daily range of temperature,
precipitation, surface pressure, and boundary layer height), under
the assumption that the treatment group and control group in
our sample are comparable conditional on these atmospheric con-
trols. We obtain positive estimates from different specifications of
atmospheric controls. Since city-hour fixed effects are essential, we
mainly look at columns 4 to 6. In particular, compared with col-
umns 5 and 6, the estimates in column 4 that did not control atmo-
spheric conditions are biased, although remain positive (significant
at 10% level).

Nevertheless, in some cities, we may have either treatment sta-
tions or control stations but not both. To ensure better comparabil-
ity between the two groups, we further restrict our sample to cities
that contain at least one treatment station and one control station.
The refined sample results in 57 treatment stations and 60 control
stations in 33 cities (see the cyan polygons in Fig. 1). We replicate
our main analyses in Table 2 Panel B, which are largely consistent
with the results in Table 2 Panel A using the full sample. The effect
is 1.2% smaller in magnitude using the restricted sample (as shown
in column 6 of Panel B).

The results in Table 2 Panel B further confirm the credibility of
the restricted sample. We can see that estimates across columns 1
and 6 in Panel B are similar, whether controlling for city-hour fixed
effects and atmospheric conditions or not. The high consistency in
the estimates across all specifications in Panel B reflects the cred-
ibility of the restricted sample and that the treatment and control
groups are highly comparable in the restricted sample, even when
not conditional on atmospheric conditions.

Overall, considering the size and geographical coverage of the
sample, we use the full sample, absorb city-hour fixed effects
and flexibly control for atmospheric conditions. Therefore, we pre-
fer column 6 to be the baseline results. As shown in column 6 of
Table 2, SO, is increased by 6.3% per hour after sunset in the trea-
ted stations, which is significant at the 1% level. We further con-

duct robustness checks in Section 5.2 to rule out alternative
stories such as atmospheric phenomena or electricity generation.
In addition, as discussed before, SO, is a primary rather than a sec-
ondary pollutant, so we are confident that the increase in SO, is
caused by industrial emissions after sunset.

5.1. Comparability of the treatment and control group

Our identification strategy relies heavily on the comparability of
the treatment and control groups. In this subsection, we test this
assumption from various perspectives. We previously compared
the raw time trends of SO, (in log form) between the treatment
and control groups as shown in Fig. 2. Then, to test if the observ-
able meteorological conditions could differ across areas before
and after sunset and thus further verify whether the treatment
and control groups are comparable, we use our primary
difference-in-differences model but replace the dependent variable
with each weather control in the following analysis. Table 3 reports
the estimated coefficients of two core independent variables, Sun-
set and Treat*Sunset, respectively. Conditional on the same set of
fixed effects as the main specification, the coefficients of Sunset
are statistically significant, except for the result for surface pres-
sure, indicating that atmospheric conditions do indeed change
after sunset. Consistent with the findings in environmental science
literature, many indicators suggest worse diffusion conditions after
sunset. For example, the wind speed and boundary layer height
(BLH) drop considerably, leading to the accumulation of pollutants
at the ground level. However, as shown in Table 3 Panel A, the coef-
ficients of Treat*Sunset show that most weather conditions (tem-
perature, dew point temperature, precipitation, wind speed, and
wind direction) do not change differently between treatment and
control groups after sunset. The only two exceptions that move dif-
ferently between these two groups are boundary layer height and
surface pressure. Specifically, the regression results suggest that
both surface pressure and BLH have a smaller decrement in the
treatment areas than in control areas. However, the relative values
of the decrement for surface pressure and BLH are very small com-
pared to their mean values. More importantly, since high surface
pressure and high boundary layer height have both been widely
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Table 3
Atmospheric conditions of treatment and control groups.
(1) (2) (3) (4) (5) (6) (7)
VARIABLES Temperature Wind speed Dew temperature Rain Wind direction Surface pressure BLH
Panel A: full sample
Sunset —1.758*** -1.078*** —1.392%** 0.293*** 2.451%* -10.351 —177.640"**
(0.161) (0.196) (0.139) (0.033) (0.906) (12.723) (15.615)
Treat*Sunset 0.286 —-0.059 0.031 —-0.008 0.721 117.260*** 55.836***
(0.230) (0.197) (0.222) (0.024) (1.175) (21.404) (17.507)
Observations 4,669,208 4,669,517 4,668,020 4,669,284 4,667,302 4,694,757 4,694,757
R-squared 0.853 0.327 0.876 0.144 0.180 0.998 0.543
Benchmark 16.660 27.912 7117 0.387 251.075 94468.284 702.566
Relative Value 0.017 —0.002 0.004 -0.022 0.003 0.001 0.079
Panel B: restricted sample
Sunset —1.439*** —-0.926** —1.534*** 0.238*** 2.746** 52.834*** -67.626***
(0.280) (0.424) (0.234) (0.030) (1.329) (18.683) (15.364)
Treat*Sunset —0.081 -0.128 —-0.043 0.012 -0.410 —8.008* —16.080
(0.084) (0.168) (0.103) (0.015) (0.996) (4.034) (13.347)
Observations 1,243,672 1,244,618 1,243,299 1,243,672 1,244,533 1,254,936 1,254,936
R-squared 0.863 0.325 0.870 0.084 0.213 0.994 0.537
Benchmark 17.720 30.516 9.400 0.313 254.882 99084.815 647.458
Relative Value —0.005 —0.004 —0.005 0.037 —0.002 —0.0001 -0.025
Date FE Yes Yes Yes Yes Yes Yes Yes
Station-Year FE Yes Yes Yes Yes Yes Yes Yes
City-Hour FE Yes Yes Yes Yes Yes Yes Yes
Cluster city date city date city date city date city date city date city date

NOTES: This table reports the coefficients of Sunset and Treat*Sunset, following our main specification but replacing the dependent variable with the respective atmospheric
control. The relative value is the ratio between the coefficient of Treat*Sunset and the mean value of the dependent variable. The time period is from 2015 to 2017. Standard
errors are robustly two-way clustered at city and date levels. *P < 0.10;**P < 0.05;***P < 0.01.

shown to be conducive to the diffusion of pollutants (Xiang et al.,
2019), our estimates should be at least at the lower bounds of
the disguised pollution. In addition, compared to Table 3 Panel A,
the results in Panel B using the restricted sample show that there
are negligible differences for all weather conditions; in other
words, the treatment group and control group are highly compara-
ble in this regard. Although the coefficient of Treat*Sunset for sur-
face pressure is marginally significant, the relative magnitude is
extremely small compared to the mean value of surface pressure.

Third, Fig. 3 presents the event study on SO, (in log form,
regression results available in Table A3). The coefficients represent
the difference in the pollution level in a certain hour (relative to
the sunset hour) compared to the first hour before sunset. There-
fore, the coefficient captures the cumulative effect of disguised pol-
lution after sunset. As shown in Fig. 3, SO, significantly increases
after the sunset hour. The overall SO, level increases by 10.8% until
four hours after sunset compared to before sunset. In absolute
terms, the event study suggests that the SO, increased by
2.58 pg/m> four hours after sunset using the pre-sunset 6-hour
average (in the treatment group) as the baseline.

The event study helps us to look at the pre-trends. In the six
hours before sunset, the changes in pollutant levels between the
treatment and control groups are not jointly significantly different.
However, the coefficients at hour = —2 and -3 are statistically sig-
nificant (although economically insignificant) at the 5% level.
According to the literature and its associated programming pack-
age, the sunset time utilized in our study is calculated mechani-
cally based on three crucial variables; latitude, longitude, and
date (Corripio, 2003). However, apart from these three key deter-
minants, there are other potential factors, such as elevation, that
could also affect visibility around sunset time, which could cause
a measurement error of the exact time at which the discharged
smoke is no longer visible to the naked eye. There are two reasons
why elevation affects visibility around sunset time. First, due to the
phenomenon of refraction of light, locations at higher elevations
usually observe sunset later than those at lower elevations, even
if the latitudes and longitudes of these locations are identical. Sec-
ond, the topography can also affect how much light is seen; that is,

areas surrounded by mountains may have poorer visibility
conditions.

To further illustrate how the composition of stations at different
altitudes affects the performance of the parallel pre-trend test, we
use 1,000 m as a threshold of elevation and divide the full sample
into low- and high-elevation groups, which comprises 116 (3)
treatment stations and 213 (97) control stations, respectively. As
shown in the event study in Fig. A4, the DID coefficients prior to
sunset estimated using only low-altitude stations (eleva-
tion<1,000 m) are not significantly different from zero both indi-
vidually and jointly, and no significantly different pre-trend can
be visually observed.

In addition, in the event study results of the restricted sample
shown in Appendix Fig. A5, the pre-sunset coefficients are individ-
ually and jointly statistically insignificant, which further give us
confidence in the previous statement that the treatment and con-
trol groups are highly comparable in the restricted sample.

Lastly, we explore how well-powered this test is in our context,
although we do not find evidence of differential pre-trends in the
event study. Following Roth (2022), we first determine the size
of a linear pre-trend we are able to detect. As shown in Fig. 4,
our analysis suggests that we could detect a small positive linear
trend of a magnitude of 0.00899 or greater (in absolute terms) with
80% power in our event study (i.e., we have an 80% probability of
finding a significant pre-trend under the pre-trend of such size).
If a trend of a size of up to 0.00899 is indeed present (although
not detectable to us), we calculate that it would generate a bias
of at most 0.03525 by post-hour 4 following the expansion. Our
actual estimate in post-hour 4 is 0.1079 and is substantially larger
(3.06 x ) than this potential bias.

5.2. Robustness checks

In this subsection, we conduct a few robustness checks. We
show that our estimated effect is not driven by the alternative sto-
ries of atmospheric phenomena, electricity demand, normal pro-
duction shifts, coal-burning for heating purposes, and traffic flow
changes, but is because of firm emission behaviors.
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Fig. 3. Event study (sunset). This figure presents the coefficients and 95% confidence interval of the event study. The event time is the sunset hour. The baseline average is the

first hour before sunset. The coefficient estimates are available in Table A3.
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Fig. 4. Pre-trends test. This figure presents the pre-trends test proposed by Roth (2022). The analysis suggests that we can detect a fairly small positive linear trend of a
magnitude of 0.00899 (the slope of the red line) or greater (in absolute terms) with 80% power in our event study. If a trend of a size of up to 0.00899 is indeed present, we
calculate that it would generate a bias of at most 0.03525 by post hour 4 following the expansion, as shown by the blue line. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

Atmospheric changes. Generally, the diurnal variations of pol-
lutants exhibiting an early morning peak and a small secondary
peak in the evening are well documented in the literature. One
may worry that the disguised pollution we find is a kind of atmo-
spheric phenomenon instead of being due to firms’ behavior. Stud-
ies in environmental science report that dissipation
(meteorological) and emission rate (anthropogenic) are the two
main sources of the diurnal variation in pollution (Halliday and
Kemeny, 1964; Kuerban et al., 2020; Raynor et al., 1974; Zhang
and Cao, 2015). We acknowledge that the changes in meteorolog-
ical conditions, including temperature, relative humidity, wind,

10

precipitation, surface pressure, and boundary layer height, may
negatively influence the dissipation rate of pollutants after sunset.
However, we conduct our analyses under a difference-in-
differences identification setting. Considering that the changes in
meteorological conditions that occur in the treatment group and
control group move in the same direction simultaneously (as pre-
sented in Table 3), the causal inferences of firms’ polluting behav-
ior should not be threatened.

Furthermore, we conduct additional tests, shown in Table 4. As
with the results presented in Table 3, we find boundary layer
height and surface pressure change are slightly different (although
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Table 4
Robustness - control atmospheric conditions differently.
(1) (2) (3) (4)
VARIABLES Inso2 Inso2 Inso2 Inso2
Panel A: full sample
Treat*Sunset 0.057*** 0.063*** 0.063*** 0.064***
(0.020) (0.018) (0.019) (0.018)
Observations 4,099,314 4,099,314 4,096,299 4,099,314
R-squared 0.482 0.487 0.487 0.488
Panel B: restricted sample (33 cities)
Treat*Sunset 0.055*** 0.051*** 0.054*** 0.051***
(0.017) (0.017) (0.017) (0.017)
Observations 1,144,133 1,144,133 1,143,363 1,144,133
R-squared 0.499 0.503 0.503 0.505
Weather Yes Yes Yes Yes
BLH & SP Yes Yes
pre-sunset BLH & SP Yes
weather interactions Yes
Date FE Yes Yes Yes Yes
Station-Year FE Yes Yes Yes Yes
City-Hour FE Yes Yes Yes Yes
Cluster city date city date city date city date

NOTES: This table reports the regression results using different specifications in terms of atmospheric conditions. Column 1 does not include boundary layer height (BLH) and
surface pressure (SP) as controls; column 2 is our baseline specification, which controls BLH and SP; column 3 controls the average pre-sunset BLH and SP; column 4 adds the
interactions of temperature with wind speed, temperature with precipitation, wind direction with wind speed, and wind speed with precipitation, based on column 2. The
time period is from 2015 to 2017. Standard errors are robustly two-way clustered at city and date levels. *P < 0.10;**P < 0.05;***P < 0.01.

in a small magnitude) between the treatment and control group
after sunset, which may indicate these two variables are ‘bad con-
trols’. Therefore, we conduct robustness checks by excluding these
two controls (column 1), and controlling the average pre-sunset
boundary layer height and surface pressure (column 3), respec-
tively. Compared with our baseline results in Table 4 column 2
(also Table 2 column 6), the estimates using different specifications
in terms of boundary layer height and surface pressure are similar.
We also flexibly control for atmospheric conditions by adding
interactions of temperature with wind speed, temperature with
precipitation, wind direction with wind speed, and wind speed
with precipitation, and still, the results are similar.

Electricity generation and electricity price. We exclude the
alternative story of electricity demand change after sunset based
on the results presented in Table 5. One story related to electricity
is that powerplants may need to produce more electricity to meet
the peak demand after sunset, thus driving up pollution after sun-
set. To deal with this concern, we exclude treated stations from our
sample if there are any powerplants within a 3 km radius, which
reduces the number of stations by 34. The regression results
remain similar to Table 2, as presented in Table 5 column 1. We
further add city-relative (-to-sunset)-hour fixed effects, to capture
electricity demand changes right after sunset, and the results in
columns 2 and 3 remain similar to our baseline.

The other story related to electricity is that firms may produce
during the night shift because the electricity price may be cheaper
at night. In this case, the increase in pollution after sunset is not a
disguised behavior, but a reflection of firms’ shift of production
from daytime to nighttime. As for this story, first, electricity price
changes are by the hour instead of by sunset, which is absorbed
in the city-hour fixed effects. In addition, we manually collect the
electricity price data for each province. As shown in Appendix
Fig. A6, the electricity price is generally higher in the first few
hours after sunset (the average sunset hour in our sample is
approximately 6:32 pm). Therefore, firms should reduce their pro-
duction after sunset if they want to save on electricity costs. For
alternative tests, we restrict the sample in two ways: 1) we restrict
to cities where the average electricity price six hours before sunset
is lower than the average electricity price four hours after sunset,
and thus drop approximately 17% of the observations; 2) we

restrict to cities where the average electricity price six hours before
sunset is equal to the average electricity price four hours after sun-
set, and thus keep only 10% of the observations. In these two
restricted samples, firms should not have an incentive to shift pro-
duction from daytime to post-sunset to save electricity costs. As
shown in Table 5 columns 4 and 5, the estimated coefficients are
still significantly positive, and the magnitude is even slightly larger
in column 5, suggesting that our results are not driven by the
change in electricity prices.

Industrial production changes corresponding with nightfall.
One could plausibly voice a concern that the rising pollution gap
between the industrial and non-industrial areas does not necessar-
ily reflect firms’ strategic responses to pollution monitoring and
regulation enforcement, but reflects normal shifts in economic
activities that correspond with nightfall, such as nocturnal manu-
facturing operations. We rule out this alternative story based on
the following three points.

First, for an average industrial firm, the production costs that
may vary with time within a day typically include labor costs, elec-
tricity costs, and, in the context of this paper, desulfurization costs.
Among these costs, labor costs usually increase during nighttime
because of overtime pay or night shift differential pay; besides,
electricity costs are also higher during this time.!> Therefore, theo-
retically, a firm would not have an incentive to expand production
after sunset considering the increased costs of labor and electricity.
Instead, the relative increase in SO, in the industrial areas after sun-
set is more likely to be the consequence of firms turning off the
scrubbers to reduce desulfurization costs.

Second, according to the technical requirements for environ-
mental protection products released by Ministry of Ecology and
Environment of China, the desulfurization efficiency of the desulfu-
rization equipment should be greater than 80%.'° Even if all of the

15 As shown in Fig. A.6, most of the peak electricity prices occur at 7pm, which is
approximately one or two hours after sunset.

16 please refer to https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/other/hbcpjsyq/
200607/W020111221562339416293.pdf (accessed on March 9, 2023). The specifica-
tions for environmental protection product (Wet flue-gas desulphurization and
precipitator device) stipulates the desulfurization efficiency of the desulfurization and
dust removal devices utilizing chemical desulfurization machines to reduce the
concentration of sulfur dioxide emissions in flue gas should exceed 80%.
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Table 5
Electricity demand and electricity price.
(1) 2) (3) (4) (5)
Inso2 Inso2 Inso2 Inso2 Inso2
electricity generation electricity price
Treat*Sunset 0.071*** 0.046*** 0.046™** 0.053*** 0.078***
(0.019) (0.015) (0.016) (0.017) (0.015)
Observations 3,769,166 4,099,314 4,099,314 3,417,647 395,843
R-squared 0.485 0.479 0.518 0.487 0.489
Sample Exclude powerplant all all Pmean(after) > Ppean(before) Pmean(after) = Ppean(before)
Atmospheric conditions Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes
Station-Year FE Yes Yes Yes Yes Yes
City-Hour FE Yes Yes Yes Yes
City-Relative-Hour FE Yes Yes
Cluster city date city date city date city date city date

NOTES: This table rules out alternative stories related to electricity demand. Column 1 excludes treated stations from our sample if there are any power plants within a 3 km
radius. Columns 2 and 3 control city-relative-hour fixed effects to absorb the electricity demand change relative to sunset. Column 4 restricts the sample to cities where the
minimum electricity price six hours before sunset is lower than the minimum electricity price four hours after sunset, and column 5 restricts the sample to cities where the
average electricity price six hours before sunset is equal to the average electricity price four hours after sunset. The time period is from 2015 to 2017. Standard errors are

robustly two-way clustered at city and date levels. *P < 0.10;**P < 0.05;***P < 0.01.

firms increase their production rate by 5% after sunset, SO, would
increase by at most 1% (=5%*(1-80%)), which is much less than the
magnitude of SO, increment that we have shown. To achieve the
observed 6.3% increase in SO,, every firm’s production would have
to increase substantially by at least 31.5% (=6.3%/(1-80%)) after sun-
set. In other words, it is not realistic to find an impact as large as a
6.3% increase in SO, after sunset if all firms increase production
and keep the desulfurization equipment running.

Third, we attempt to empirically infer changes in the produc-
tion activities of firms using CEMS data. In the CEMS data of Zhe-
jiang Province, 34 firms report flue gas flow or the rate of flue
gas flow, which could act as proxies for the hourly production out-
put. Table A4 shows the comparisons of flue gas flow and flue gas
flow rate before and after sunset for a subsample of the CEMS firms
in Zhejiang Province. The coefficients on the sunset variable are
statistically insignificant, implying that firms’ production does
not significantly increase after sunset.!”

Winter heating and traffic flows. Fourth, we rule out the possi-
bility that increases in SO, are driven by heating and traffic flow
changes after sunset. Residents near the treated stations burn more
coal for heating purposes after sunset than the control stations.
Coal-burning by residents is common in China, especially in rural
and suburban areas. The coal used by local residents may produce
SO, due to incomplete combustion. After sunset, the temperature
drops, which may increase coal-burning activities. Moreover, the
coal-burning activities may increase more after sunset near the
treated monitoring stations than the control stations because the
population density (for example, housing for workers of the sur-
rounding factories) near treated stations may be higher than the
control stations. In Table 6, we show that the above story is unli-
kely to explain our findings. As presented in Table 6 column 1,
the results remain similar to Table 2 if we exclude the whole win-
ter heating season from the sample (November to March) for all
the stations. In Table 6 column 2, we interact temperature with

17 Nevertheless, we admit that there is a lack of clear quantified relationship
between the production rate and the flue gas flow rate monitored by the CEMS. In
addition, these two metrics are related to a series of other factors including
atmospheric pressure, static flue gas pressure, flue gas temperature, and moisture
content in the flue gas. More importantly, the CEMS data in China currently only cover
some of the largest industrial firms and not all of the CEMS firms have reported
information of flue gas flow and the rate of flue gas flow. Therefore, the sample used
in the regressions is hardly representative of all the industrial firms in China, thus the
findings based on these tests are only suggestive.
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the DID term. In column 3, we define a variable “NeedHeating” that
equals 1 if the temperature is below 10 degrees Celsius, otherwise
0. We interact “NeedHeating” with the DID term, and the triple dif-
ference term Treat*Sunset*Temperature. We also control for all the
pairwise and triple difference interactions. Even though our treat-
ment effect decreases with temperature, we do not find that the
treatment effect correlates with temperature during the heating
season (when the temperature is below 10 degrees Celsius).

Another possible story is that the increase in pollution after
sunset is driven by vehicles instead of factory emissions. There
might be more diesel trucks at night because diesel trucks are gen-
erally not allowed to enter the main roads in major cities in the
daytime, thus producing more SO, after sunset. However, our
results are not likely to be driven by diesel trucks for two reasons.
First, the entry restriction on trucks is by the hour instead of by
sunset time. For example, trucks cannot enter the major urban area
in Beijing before midnight (12 am) and after 6 am. Therefore, the
policy shift is already captured by the city-hour fixed effects. In
addition, to further reassure readers that our results are not con-
founded by policy changes on trucks, we measure the major road
length (in km) within a 3 km radius of each monitoring station
and interact the road length with the DID coefficient. The hetero-
geneity analysis suggests that the disguised pollution effect is
almost the same in monitoring stations with more dense road net-
works, as presented in Table 6 column 4. We conduct two addi-
tional tests by 1) excluding the city-day observations if trucks
are allowed to enter the major urban area in our post-event win-
dow (i.e., within four hours post-sunset), and 2) excluding the
post-sunset hours that trucks are allowed to enter the major urban
area (i.e., drop the hours affected instead of all the hours in that
city-day cell). The results are reported in Appendix Table A1 with
an even larger magnitude for the estimation of SO,

Define different treatment variables. Lastly, we conduct analy-
ses using continuous treatment, which is defined as the number of
SO, factories within various radii of each station instead of a
dummy variable. In this way, the regressions in Table 7 use data
from all stations, and the coefficient of the core interaction term
“NumOfFirms*Sunset” represents the marginal effect of one more
nearby dirty factories on the SO, concentration level after sunset.
As we can see in Table 7, the coefficients for different radii are sta-
tistically significant, which is consistent with our main finding. We
also change the radii that are used to define the treatment group
into 4 km or 5 km and find our findings remain similar, as shown
in Appendix Table A2.
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Table 6
Robustness - temperature, winter heating, and road network.
(1) (2) (3) (4)
VARIABLES Inso2 Inso2 Inso2 Inso2
exclude Nov-March
Treat*AftSun 0.037** 0.050* 0.040 0.076**
(0.015) (0.029) (0.025) (0.035)
Treat*AftSun*Temperature —-0.001 —0.0004
(0.002) (0.001)
Treat*AftSun*NeedHeating 0.014
(0.034)
Treat*AftSun*Temperature*NeedHeating —0.003
(0.005)
Treat*AftSun*Roadkm —0.0002
(0.0004)
Observations 2,377,166 4,099,314 4,099,314 4,066,091
R-squared 0.434 0.487 0.489 0.481
Atmospheric conditions Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
Station-Year FE Yes Yes Yes Yes
City-Hour FE Yes Yes Yes Yes
Cluster city date city date city date city date

NOTES: This table rules out the alternative hypothesis that our observed effect is driven by residents burning coal for heating purposes or driven by the change in traffic flows.
Column 1 replicates Table 2 in the paper, excluding the winter heating period (November to March). In columns 2 and 3, we interact temperature with the DID term.
Moreover, we define a variable “NeedHeating” that equals 1 if the temperature is below 10 Celsius degrees, otherwise 0. We interact “NeedHeating” with the DID term, and
the triple difference term Treat*Sunset* Temperature. We also control for all the pairwise and triple difference interactions. In column 4, we add the interaction of road length
with the DID term. All columns use 429 monitoring stations in 192 cities. The time period is from 2015 to 2017. Standard errors are robustly two-way clustered at city and day

levels. *P < 0.10;**P < 0.05;***P < 0.01.

Table 7
Robustness - continuous treatment.
(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Inso2 Inso2 Inso2 Inso2 Inso2 Inso2 Inso2 Inso2
NumOfFirms*Sunset 0.005* 0.004* 0.005** 0.005*** 0.004** 0.003** 0.004** 0.004**
(0.003) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001)
Observations 12,654,383 12,654,383 12,654,383 12,654,383 12,654,383 12,654,383 12,654,383 12,654,383
R-squared 0.490 0.490 0.490 0.490 0.490 0.490 0.490 0.490
Radius 3 km 4 km 5 km 6 km 7 km 8 km 9 km 10 km
Weather Yes Yes Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes Yes Yes
Station-Year FE Yes Yes Yes Yes Yes Yes Yes Yes
City-Hour FE Yes Yes Yes Yes Yes Yes Yes Yes
Cluster city date city date city date city date city date city date city date city date

NOTES: This table reports the regression coefficients using Eq. (3). The treatment intensity (denoted by Num) is defined as the number of SO, firms within a given radius of
the station. From columns 1 to 8, we set different radii from 3 km to 10 km. The time period is from 2015 to 2017. Standard errors are robustly two-way clustered at city and

date levels. *P < 0.10;**P < 0.05;***P < 0.01.

6. Discussion
6.1. Disguised pollution and political factors

In this subsection, we further investigate the correlation
between disguised pollution and economic growth pressure, polit-
ical turnover, and central inspections. The following analyses indi-
rectly verify that the effect documented in our paper is due to
firms’ emission behaviors instead of atmospheric chemical effects,
which should not vary due to economic and political factors.

6.1.1. Political turnover

Officials face many challenges in areas such as economic growth
and environmental governance, in part because they may lack of
local knowledge when they are transferred to a new place (Shi
et al., 2021). In this case, the new prefectural leader may not be
able to take care of everything in his/her early days in office, espe-
cially behaviors disguised by night. Therefore, we expect the dis-
guised pollution phenomenon to be more prominent in the early
days when the new leader has just taken office. We conduct a
triple-difference estimation and interact the DD term
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(Sunset;; x T;) with time dummies indicating periods within 0-
5 months (Turnowver|[0,6m)), within 6-11 months
(Turnover[6,12m)), and more than or equal to 12 months
(Turnowver[12m,.)) of the turnover of the prefectural leader, respec-
tively. We also include all the pairwise terms but only report the
coefficients relevant to our study.

Table 8 presents the correlation between political turnover and
disguised pollution. Columns 1 and 3 only keep the 124 cities that
experienced one turnover of the municipal party secretary during
the sample period 2015-2017, and columns 2 and 4 keep the
180 cities that did not experience any or experienced one change
of party secretary. As shown in Table 8, we find that in cities that
experienced political turnover once during 2015-2017, the dis-
guised pollution effect is 54.0%-61.9% (0.039/0.063 = 61.9%; 0.03
4/0.063 = 54.0%) higher half a year after the change of municipal
party secretary, compared with periods before the political
turnover.

Additionally, we investigate whether having experience related
to environmental governance helps the leader overcome the disad-
vantage due to lack of local knowledge. As presented in columns 3
and 4, we find the turnover effect that increases disguised pollu-
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Table 8
Political turnover and disguised pollution.
(1) (2) (3) (4) (5) (6)
VARIABLES Inso2 Inso2 Inso2 Inso2 Inso2 Inso2
Party secretary Mayor
Treat*Sunset 0.033 0.037** 0.025 0.032* 0.039* 0.039**
(0.020) (0.018) (0.020) (0.018) (0.020) (0.018)
Treat*Sunset*Turnover [0,6m) 0.039*** 0.034** 0.044*** 0.037** 0.012 0.009
(0.015) (0.016) (0.015) (0.016) (0.015) (0.016)
Treat*Sunset*Turnover [6,12 m) 0.007 —0.001 0.012 0.002 0.004 0.0002
(0.015) (0.017) (0.015) (0.017) (0.017) (0.018)
Treat*Sunset*Turnover [12 m,.) 0.019 0.012 0.023 0.013 —0.009 —0.012
(0.021) (0.021) (0.021) (0.021) (0.018) (0.019)
Treat*Sunset*Turnover [0,6m)*Env —0.145*** —0.139***
(0.029) (0.030)
Treat*Sunset*Turnover [6,12 m)*Env -0.151** -0.141*
(0.074) (0.073)
Treat*Sunset*Turnover [12 m,.)*Env -0.073 —0.060
(0.069) (0.071)
Observations 2,323,031 3,297,384 2,323,031 3,297,384 2,429,595 3,097,414
R-squared 0.492 0.478 0.492 0.478 0.463 0.466
Sample turnover = 1 turnover = 0-1 turnover = 1 turnover = 0-1 turnover = 1 turnover = 0-1
Atmospheric conditions Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes
Station-Year FE Yes Yes Yes Yes Yes Yes
City-Hour FE Yes Yes Yes Yes Yes Yes
Cluster city date city date city date city date city date city date

NOTES: This table reports the heterogeneity analysis by interacting the DID term with time dummies indicating periods within 0-5 months (Turnover[0,6m)), within 6-
11 months (Turnowver[6,12m)), and more than or equal to 12 months (Turnover[12m,.)) of the turnover of the prefectural leader, respectively. Columns 1-4 report the
correlation between disguised pollution and the turnover of the party secretary, and columns 5-6 report the correlation with the turnover of the mayor. “Env” is a dummy
equal to 1 if the leader has environmental governance experience, otherwise 0. Columns 1 and 3 only keep the 124 cities that experienced one turnover of the municipal party
secretary during the sample period 2015-2017, and columns 2 and 4 keep the 180 cities that did not experience or experienced one change of party secretary. Same with

columns 5 and 6.

tion in the first six months of the new secretary’s tenure is signif-
icantly less noticeable if the new party secretary has environmen-
tal governance experience, relative to the party secretaries without
environmental governance experience.

We did not find similar evidence in terms of mayoral change,
which is probably because the party secretary plays a major role
in the governance of a city in China and the promotion criteria
for the secretary and mayor may also be different (Zuo, 2015).
The correlation between disguised pollution and political turnover
confirms that our finding is not a purely atmospheric phenomenon
but is attributable to the emission behaviors of firms.

6.1.2. The role of inspections

We have shown above that firms pollute more after sunset to
circumvent environmental regulations. In this section, we evaluate
whether or not government inspections are effective in reducing
firms’ disguised pollution behavior. We exploit the staggered
nationwide inspection on industrial pollution conducted by the
MEP across all the provinces in China from December 2015 to
August 2017. The inspection teams stayed in each province for
one month to investigate pollution issues in that province. During
their stay, the inspection team sets up hotlines and mailboxes and
welcomes complaints about pollution-related issues. Complaints
related to disguised pollution at night have been documented by
the MEP inspection team as a type of representative case.'®
Fig. A7 presents the timeline for the central inspection of different
provinces. From December 2015 to September 2017, the central
inspectors conducted approximately five rounds of inspections. Each
round typically covered 7-8 provinces simultaneously, with the
exception of the first round, which only inspected Hebei province.

18 For example, Case 3 in this MEP document (https://www.gov.cn/xinwen/2016-
11/23/content_5136542.htm, accessed on 20 Dec 2022) is about disguised pollution
at night in Inner Mongolia. Case 12 is about disguised pollution at night in Jiangsu
Province.

The inspection team usually spent about a month (4.4 weeks on
average) in each province.

We collect the exact start and end dates of the inspection teams
in each province and investigate the dynamic effects at the weekly
level during the inspection. We first conduct the analysis from a
short-term perspective, restricting the periods from eight weeks
before the inspection, five weeks during the inspection, and four
weeks after the inspection as our sample. For each given date, cer-
tain provinces are inspected while others are not, allowing us to
compare the pre- and post-sunset difference in treatment and con-
trol in the inspected provinces, with the pre- and post-sunset dif-
ference in treatment and control in non-inspected provinces.
Fig. 5 shows the event study estimates of
Treat x Sunset x Inspect,, with coefficients reported in column 3
of Appendix Table A5. The coefficients in Fig. 5 represent the trend
of disguised pollution behavior during and after the central gov-
ernment’s inspection, compared to the benchmark period — eight
to three weeks before the inspection. Our findings suggest that
inspection may temporarily have a negative correlation with dis-
guised pollution, with only the coefficients for the fourth week of
the inspection showing marginal statistical significance (p-value
of 0.08), while the coefficients for the other weeks are not statisti-
cally significant.'® However, when the inspection team is about to
leave, there is no significant difference in the disguised emission
behavior after sunset compared to the benchmark period. Our find-
ings are also in line with Karplus and Wu (2019), who find inspec-

19 One possible explanation is that the local government does not take action before
the central inspection team’s arrival and only starts to impose stricter regulations and
supervision on firms upon the arrival of the inspectors in the city. Therefore, the
largest reduction effect on disguised pollution should occur in the last week of the
inspection period, with the gradual entry of central inspectors to different cities of the
province and more and more cities in the province taking action. In our sample, 90% of
the inspections last for four weeks, which makes it reasonable to expect the largest
effect in the fourth week.
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Fig. 5. Inspection. This figure presents the coefficients and 95% confidence intervals of Treat x Sunset x Inspect,, namely the dynamic effects of inspection on disguised
pollution at the weekly level. The benchmark is the period from the beginning of the data to three weeks before the inspection. Week 0 denotes the week when the inspection

starts.

tions only reduce sulfur dioxide emissions over a five-week period.
Additionally, from a long-term perspective, columns 1 and 2 of
Appendix Table A5 show that the inspection, on average, does not
correlate with a statistically significant reduction of disguised pollu-
tion, although the coefficients are negative. In summary, our results
suggest that inspection by MEP officials may have a limited and tem-
porary impact in reducing disguised pollution in the short-term;
however, inspection alone may not be an effective long-term solu-
tion for reducing disguised pollution.Table A6.

6.1.3. Economic growth pressure

In general, there is a tradeoff between pollution abatement and
local economic growth for local governors. More strict enforcement
of environmental regulations may hurt the GDP growth rate of the
local region. In this subsection, we aim to understand whether dis-
guised pollution is more severe when the local government faces
more downward pressure on economic growth. In saying that,
we interact the GDP growth rate of a city in the previous year with
the DD term (Sunset;, x T;), controlling for all the pairwise and
main terms. As presented in Table 9, the DDD coefficient is signif-
icantly negative in columns 1 and 2, suggesting that a 1% lower
GDP growth rate in the previous year increases the magnitude of
the disguised pollution effect by 11.1-12.7% (0.007/0.063 = 11.1%
; 0.008/0.063 = 12.7%). The DDD coefficient in column 3 is not sta-
tistically significant, which is likely due to the smaller sample size.

The finding above may also explain a puzzle: local governments
should also have access to environmental monitoring data. Why
can't the governors identify the areas affected by disguised pollu-
tion from the data and search for the firms engaging in such behav-
ior? The tradeoff between GDP growth rate and disguised pollution
may suggest collusion between local governors and industrial

15

firms: local governors are more likely to tolerate disguised pollu-
tion if the GDP growth rate is unpromising.

Table 9
GDP growth and disguised pollution.
(1 (2) (3)
VARIABLES Inso2 Inso2 Inso2
full-192 40vs20 + restricted-
cities restrict-71 33 cities
cities
Treat*AftSun 0.125*** 0.110*** 0.089**
(0.040) (0.023) (0.036)
Treat*AftSun*GDP —0.008** —0.007*** —0.005
GrowthRate in previous year
(0.004) (0.002) (0.004)
Observations 3,608,649 2,762,405 1,144,133
R-squared 0.490 0.533 0.503
Atmospheric conditions Yes Yes Yes
Date FE Yes Yes Yes
Station-Year FE Yes Yes Yes
City-Hour FE Yes Yes Yes
Cluster city date city date city date

NOTES: This table reports the heterogeneity analysis by interacting the DID term
with the GDP growth rate of the previous year for the matched cities. All pairwise
interactions and main effects are controlled for. In Column 1, we use the regression
sample of our main analysis, which includes the top 20% and bottom 20% of stations
in terms of the number of factories in SO,-intensive industries. In Column 2, we
restrict the sample to 71 cities that host at least one treatment and one control
station, but under the criteria of top 40% or bottom 20% in terms of the number of
factories in SO, intensive industries. In Column 3, we further restrict the sample to
33 cities that have at least one treatment (top 20%) and one control (bottom 20%)
station. Standard errors are robustly two-way clustered at city and date levels.
*P < 0.10;*P < 0.05;*"*P < 0.01.
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Fig. 6. Event study (sunrise). This figure presents the coefficients and 95% confidence interval of the event study of sunrise. The event time is the sunrise hour. The sample is
six hours before sunrise, the sunrise hour, and four hours after sunrise. The baseline average is the first hour before sunrise. The coefficient estimates are available in Table A3.

6.2. The effect of sunrise

In this subsection, we investigate the effect of sunrise on pollu-
tion concentration. Our hypothesis is that firms stop the processes
and behaviors associated with disguised emission prior to sunrise
or at sunrise and then conduct normal compliant production with
scrubbers turned on, hence the pollution gap between the treat-
ment group and control group should narrow after sunrise.

Let us consider two scenarios. In the first scenario, all polluting
firms stop their disguised discharge behavior at sunrise. We would
then expect to observe a trend opposite to that seen in the event
study for sunset, whereby the difference between the treatment
and control groups would be positive before sunrise due to the
presence of disguised pollution behavior, and then gradually
decrease and converge after sunrise as pollutants disperse. In the
second scenario, all polluting firms stop their illicit discharge
behavior several hours before sunrise. In this case, we would expect
the difference between the two groups to begin decreasing and
converging before sunrise. To test these hypotheses, we conduct
an event study using the regression specification of Eq. (4); the
estimated coefficients of the dynamic effects are plotted in Fig. 6.

Fig. 6 shows that the gap between the two groups decreases
before and after sunrise, which indicates a hybrid of these two sce-
narios. In reality, firms of different types or sizes may cease their
illicit discharge at different times due to production cost consider-
ations. That is, some firms may only discharge for a few hours at
night, while others may continue to discharge throughout the
night until sunrise. In this case, we would observe the trend shown
in Fig. 6: compared to the first hour before sunrise, the gap
between the two groups gradually decreases from positive (in-
significant) to zero before sunrise, indicating a downward pre-
trend caused by firms that ceased discharging a few hours before
sunrise. The continued decrease in the gap between the two groups
three hours after sunrise is likely due to the last group of polluting
firms, which ceased discharging at sunrise. However, we recognize
that due to the lack of firm-level information, we cannot test this
heterogeneity at the station level.
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We acknowledge that the event study for sunrise faces several
challenges in the research design. First, due to the presence of dis-
guised emissions, the treatment and control groups are naturally
incomparable at night (prior to sunrise), making it difficult to
obtain an unbiased estimate in the event study and interpret the
post-sunrise coefficients. Therefore, all that we try to show is the
trend of pollution change between the treatment and control
groups pre- and post-sunrise, as presented in Fig. 6. Second,
although the gap between the two groups is estimated to decrease
after sunrise, we still need to be cautious about the estimated val-
ues of the post-sunrise coefficients. The post-sunrise estimates
tend to be biased due to the presence of the pre-trends before sun-
rise (Roth, 2022). In Fig. A8, the blue dashed line represents the
expected value of the coefficients conditional on passing the pre-
test under the hypothesized trend—47% of the magnitude of the
coefficient in the fourth hour after sunrise is composed of the bias
brought by the pre-trend. It is important to carefully consider these
biases when interpreting the coefficients.

To summarize, as shown in Fig. 6, we find an overall downward-
sloping trend around sunrise, although the post-sunrise coeffi-
cients should be interpreted with caution. This downward pattern
indicates the gap between the two groups gradually narrows
around sunrise due to the cessation of disguised emissions by pol-
luting firms.

6.3. Firm-level analysis

In this subsection, we employ firm-level data to understand the
sources of disguised pollution. To monitor the emission activities
of major polluters, the MEP installed monitors in big firms in the
polluting sectors to monitor their hourly emissions. Such data is
available on platforms accessible to the public. In this section, we
aim to understand whether the increase in pollution after sunset
is from the emissions of the monitored firms. Specifically, we com-
pare the hourly emission levels of SO, and the compliance rate
before and after sunset in 135 firms in three cities in Hebei pro-
vince and 177 firms in all the cities in Zhejiang province covered
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Table 10
Effect of sunset on monitored firms.
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(1) (2) (3)

(4)

(5) (6) (7) (8)

Inso2 compliance

Sunset 0.009 0.002 0.016 0.014 —0.001 —0.0003 —0.006™* —0.006™*

(0.013) (0.010) (0.029) (0.028) (0.001) (0.001) (0.003) (0.003)
Sunset*KeyRegion —0.008 -0.013 0.006** 0.006**

(0.030) (0.030) (0.003) (0.003)

Observations 1,153,076 1,064,361 1,153,076 1,064,361 1,272,046 1,174,577 1,272,046 1,174,577
Benchmark average / 0.951 0.951 0.951 0.951
R-squared 0.493 0.493 0.493 0.493 0.621 0.620 0.621 0.620
Atmospheric conditions Yes Yes Yes Yes
Firm-Chimney-Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Date FE Yes Yes Yes Yes Yes Yes Yes Yes
Hour FE Yes Yes Yes Yes Yes Yes Yes Yes
Cluster firm date firm date firm date firm date firm date firm date firm date firm date

NOTES: This table uses hourly monitored data in 135 firms in Hebei and 177 firms in Zhejiang. Compliance is a dummy variable equal to one if the hourly observation
measured by CEMS is non-missing and below the emission standard, otherwise zero. KeyRegion is a dummy equal to one if the firm is in the key region (47 prefectures) that
are strictly monitored by Ministry of Environmental Protection, otherwise zero. All regressions control for firm-chimney-year, date, and hour fixed effects. The time period is
2015. Standard errors are robustly two-way clustered at firm and day level. *P < 0.10;**P < 0.05;***P < 0.01.

by CEMS. For each firm, we can know the hourly emission level of
the three main pollutants, as well as whether the hourly emissions
exceed the threshold set by the MEP. Karplus et al. (2018) discuss
the possibility that CEMS data may be manipulated downward in
the 47 cities within the key regions for pollution alleviation.?°
Therefore we also interact the Sunset dummy with a dummy vari-
able indicating the key regions.

Table 10 presents the estimation results. From columns 1 to 4,
we do not find monitored firms increase their emissions after sun-
set, which suggests that the automation in pollution monitoring at
the firm level is effective in regulating the phenomenon of dis-
guised pollution. However, Karplus et al. (2018) document that
plant managers have incentives to falsify or selectively omit con-
centration data when facing stricter new standards and greater
pressure to comply. According to the requirement of CEMS, emis-
sions should be reported every hour of the day at each monitoring
unit (chimney). Following Karplus et al. (2018), we define a new
variable—firm compliance—a dummy variable equal to one if the
hourly observation measured by CEMS is available and below the
emission standard, otherwise zero. As shown in columns 5 and 6,
we find that firm compliance falls slightly after sunset (insignifi-
cant), and firms in key regions are significantly more compliant
than firms in non-key regions (columns 7 and 8), which echoes
Karplus et al. (2018)’s finding of behavior disparities between the
key region and non-key region. The magnitude of such difference
is relatively small though (approximately 0.5% drop from the
benchmark compliance rate).

Our findings show that CEMS, as an automated real-time pollu-
tion monitoring system, is effective in reducing disguised pollu-
tion, which is consistent with Greenstone et al. (2022)'s finding
that automation in air pollution monitoring improves the data
quality and thus contributes to pollution regulation. Our findings
that the difference in the firm compliance rate before and after
sunset varies depending on the intensity of regulation also sug-
gests that CEMS is not a panacea, and needs to be coordinated with
local regulatory instruments in order to have the greatest effect.

7. Conclusion
In conclusion, by comparing the hourly readings in air pollution

monitoring stations surrounded by high factory density with sta-
tions surrounded by low factory density, we find that the industrial

20 Pplease see Table A.6 in the Appendix for a list of these 47 cities.
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toxin SO, significantly increases after sunset in the treated sta-
tions. This effect is robust to different definitions of treatment
and control stations. In exploiting the high-frequency emission
data of firms monitored by CEMS, we do not find such a pattern.
Therefore, our result is likely driven by the unmonitored small
firms that can disguise their polluting behaviors under cover of
the night.

Our findings provide a better understanding of industrial firms’
polluting behavior. The monitoring stations are not randomly
located but target heavily polluted industrial areas in cities.
Despite this fact, firms near the stations still engage in disguised
pollution at night because they are not directly monitored by the
MEP. They rely on the large population of polluting firms around
these monitoring stations to mask their polluting behavior, espe-
cially at night. In contrast, monitored large firms do not engage
in disguised pollution at night, and inspections by site visit only
temporarily mitigate such behavior when MEP officials are present.
Therefore, our results call for a more comprehensive environmen-
tal monitoring system in China that not only covers large firms in
the key sectors, but also the small firms in SO,-intensive industries.
Improving the coverage and technology of monitoring systems
would be helpful in detecting regulatory noncompliance which is
prevalent not only in China but also in other developing countries
(Duflo et al., 2013; Greenstone et al., 2022).

Our findings in this paper establish the link between firms’
industrial activities and air pollution. Environmental regulation is
crucial for emission reduction in the industrial sector (Shapiro
and Walker, 2018). Furthermore, in China’s context, disguised pol-
lution by unmonitored industrial firms may generate significant
welfare losses to society. Existing literature already documents
the causal link between air pollution and health consequences,
both physically and mentally (Chen et al., 2013; Ebenstein et al.,
2017; Zhang et al., 2018a; 2018b; Zheng et al., 2019). Following
the calculation in Barwick et al. (2018) that a 10 ug/m? reduction
in PM, 5 would lead to 144.5 and 59.6 billion yuan of mortality and
morbidity savings, respectively, we can carry out a back-of-the-
envelope calculation to quantify the benefit in terms of health sav-
ings if disguised pollution is stopped. The costs of stopping dis-
guised pollution, as indicated in our analysis, would largely be in
the installation of CEMS in all SO, emitters (instead of only large
emitters as is currently the case). As shown in Appendix
Table A7, the fixed cost and operating cost of CEMS (22 billion yuan
per year) can be justified by the improved health benefits following
pollution reduction (29.2 billion yuan per year). It is also worth



S. Agarwal, Y. Han, Y. Qin et al. Journal of Public Economics 223 (2023) 104904

noting that the health benefits may only represent a lower bound Data availability

of the total benefits of improved air quality, without factoring in

the benefits of productivity improvements and the reduction of Data will be made available on request.
behavioral mistakes, among others. Therefore, we recommend
the adoption of CEMS by the whole sector of industrial polluters,
as this is likely to effectively improve air quality through a reduc-
tion in disguised pollution.
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Fig. A1. SO, and latitude in summer and winter. In this figure, we plot the residual of SO, after taking out date and hour fixed effects and weather controls, against the
latitude of each monitoring station in summer time (when higher latitude is associated with longer daytime) and winter time (when higher latitude is associated with shorter

daytime). A linear fit of the scatter plot is also presented in the figure.
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Fig. A2. Average hourly SO, in 1,583 monitoring stations, 2015-2017. We plot the average hourly SO, in 1,583 monitoring stations from 2015 to 2017 on this map. The
Ministry of Environmental Protection (MEP) publishes hourly measures of PM, 5, PM;o, CO, SO, NO,, O3 and AQI for each station every hour. Our data is downloaded from
https://beijingair.sinaapp.com/, the data source of which is the National Urban Air Quality Live Update Platform (https://106.37.208.233:20035/).
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Event Study: In(SO,), elevation < 1000m

T T T T
-6 -4 -2 0 2 4
Hours relative to sunset

Fig. A4. Event study for the sample with elevation less than 1,000 m. This figure presents the coefficients and 95% confidence interval of the event study for the low-elevation
sample. The event time is the sunset hour. The baseline average is the first hour before sunset.

Event Study (restricted sample): In(SO2)

T T T T T
-6 -4 -2 0 2 4
Hours relative to sunset

Fig. A5. Event study of the restricted sample. This figure presents the coefficients and 95% confidence interval of the same event study as Fig. 3, except that the sample is the
restricted sample. The event time is the sunset hour. The baseline average is the first hour before sunset.
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Fig. A6. Electricity price within a day. The figure presents electricity price variations within a day in different provinces in China. Each row represents a province, and each
column represents an hour. “0” represents off-peak (level 1); “1” represents off-peak (level 2); “2” represents peak (level 1), and “3” represents peak (level 2). Therefore, the
larger the number, the higher the electricity price. The information is collected manually by the authors from various sources.
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Fig. A7. Timeline for the central inspections of different provinces. This figure plots the timeline for the central inspection from 2015 to 2017.
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Event Plot and Hypothesized Trends
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Fig. A8. Pre-trends test for sunrise. This figure presents the pre-trends test proposed by Roth (2022). The analysis suggests that we can detect a negative linear trend of a
magnitude of —0.0087 (the slope of the red line) or greater (in absolute terms) with 80% power in our event study. The mean after pre-testing at hour 4 is —0.032, accounting

for about 47% of the estimate.

Table A1 Table A3
Robustness - exclude all diesel truck allowed hours. Regression table for event study in Fig. 3 (sunset) and Fig. 6 (sunrise).
(1) (2) (1) (2)
VARIABLES Inso2 Inso2 VARIABLES Inso2 (sunset) Inso2 (sunrise)
Treat*Sunset 0.064*** 0.070*** Treat*6 h before —-0.030 0.035
(0.023) (0.022) (0.025) (0.026)
Observations 2,414,220 2,805,567 Treat”s h before ~0017 0.005
R-squared 0.507 0.500 (0.016) (0.018)
. . . Treat*4 h before -0.013 —0.003
sample exclude-city-day exclude-all-hours
Atmospheric conditions Yes Yes (0.011) (0.012)
Treat*3 h before -0.017** —0.006
Date FE Yes Yes
- (0.008) (0.009)
Station-Year FE Yes Yes
- Treat*2 h before —0.015"** —0.003
City-Hour FE Yes Yes
Cluster city date city date (0.005) (0.003)
Treat*sunset or sunrise 0.018"*** 0.005
NOTES: This table reports the regression results using data that excludes the “post (0.006) (0.004)
sunset, truck allowed” observations. There are 138 cities with detailed timing of Treat™1 h after 0.036"** 0.008
diesel truck restrictions which consists of our regression sample. The time period is (0.010) (0.010)
from 2015 to 2017. Standard errors are robustly two-way clustered at city and date Treat*2 h after 0.056""* 0.004
levels. *P < 0.10;**P < 0.05;***P < 0.01. (0.016) (0.017)
Treat*3 h after 0.081*** -0.023
(0.026) (0.025)
Treat*4 h after 0.108*** -0.061*
Table A2 (0.038) (0.036)
Robustness - using different radius to define treatment. Observations 4,099,314 4,063,793
(1) 2) R—squared 0.489 0.508
VARIABLES Inso2 Inso2 Atmospheric conditions Yes Yes
Date FE Yes Yes
Treat*Sunset 0.078*** 0.073*** Station-Year FE Yes Yes
(0.023) (0.027) City-Hour FE Yes Yes
Observations 3,561,552 3,366,118 Cluster city date city date
R—sc!uared 0.493 0.498 NOTES: This table presents the regression results for the event study with respect to
Radius 4 km 5 km X . . . . .
. - sunset and sunrise respectively. The regression model is specified in Eq. (2). The
Atmospheric conditions poly poly . L
Station-Year FE v v time period is from 2015 to 2017. Standard errors are robustly two-way clustered at
ation-year €s €s city and date levels. *P < 0.10;**P < 0.05;***P < 0.01.
Date FE Yes Yes
City-Hour FE Yes Yes
Cluster city date city date

NOTES: This table alters the radius from 3 km to 4 km and 5 km when defining the
treatment and control stations. All columns use 429 monitoring stations in 192
cities. The time period is from 2015 to 2017. Standard errors are robustly two-way
clustered at city and date levels. *P < 0.10;**P < 0.05;***P < 0.01.
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Table A4
Effect of sunset on monitored firms’ production.
(1) 2) (3) (4)
VARIABLES In(flue gas flow) In(flue gas flow rate)
Sunset —0.0005 0.017 0.008 0.026
(0.013) (0.028) (0.010) (0.019)
Observations 46,144 42,463 51,646 47,516
R-squared 0.711 0.709 0.454 0.454
Benchmark 11.894 11.898 1.539 1.538
Atmospheric conditions Yes Yes
Firm-Chimney-Year FE Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
Hour FE Yes Yes Yes Yes
Cluster firm date firm date firm date firm date

NOTES: This table uses hourly monitored data of 34 firms in Zhejiang that reports flue gas flow or flue gas flow rate. Flue gas flow and flue gas flow rates are proxies for
production. All regressions control for firm-chimney-year, date, and hour fixed effects. The time period is 2015. Standard errors are robustly two-way clustered at firm and
day level. *P < 0.10;**P < 0.05;***P < 0.01.

Table A5
Impact of MEP inspection on disguised pollution.
(M (2) (3)
VARIABLES Inso2 Inso2 Inso2
Treat*Sunset 0.063*** 0.066*** 0.077***
(0.018) (0.020) (0.028)
Treat*Sunset*Inspect -0.013 -0.016
(0.020) (0.021)
Treat*Sunset*After Inspection -0.012
(0.012)
Treat*Sunset*3 weeks before inspection —0.049
(0.030)
Treat*Sunset*2 weeks before inspection —-0.028
(0.027)
Treat*Sunset*1 week before inspection —0.031
(0.032)
Treat*Sunset*1st week of inspection —-0.055
(0.034)
Treat*Sunset*2nd week of inspection —0.055
(0.037)
Treat*Sunset*3rd week of inspection —0.047
(0.042)
Treat*Sunset*4th week of inspection —-0.082*
(0.042)
Treat*Sunset*5th week of inspection 0.022
(0.040)
Treat*Sunset*1 week after inspection —-0.023
(0.044)
Treat*Sunset*2 weeks after inspection —0.056
(0.036)
Treat*Sunset*3 weeks after inspection —0.021
(0.037)
Treat*Sunset*4 weeks after inspection -0.038
(0.026)
Observations 4,099,314 4,099,314 1,534,298
R-squared 0.487 0.487 0.489
Atmospheric conditions Yes Yes Yes
Date FE Yes Yes Yes
Station-Year FE Yes Yes Yes
City-Hour FE Yes Yes Yes
Cluster city date city date city date

NOTES: This table presents the analysis of the impact of central inspection. Columns 1 and 2 report the average effect of inspection on disguised pollution. Column 3 shows
the dynamic effects (plotted in Fig. 5). We also control for all the pairwise interactions and main effects in the regressions. The time period is from 2015 to 2017. Standard
errors are robustly two-way clustered at city and date levels. *P < 0.10;**P < 0.05;***P < 0.01.
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Table A6
List of cities in the key regions.

Journal of Public Economics 223 (2023) 104904

Yangtze River Delta Region

Shanghai Nanjing Wuxi Changzhou Suzhou Nantong Yangzhou Zhenjiang
Taizhou Hangzhou Ningbo Jiaxing Huzhou Shaoxing

Pearl River Delta Region

Zhuhai Foshan Dongguan Zhongshan Jiangmen Huizhou Zhaoqing Guangzhou
Shenzhen

Beijing-Tianjin-Hebei Region

Beijing Tianjin Shijiazhuang Tangshan Baoding Langfang

Others

Jinan Qingdao Zibo Weifang Rizhao Wuhan Changsha Chongging
Chengdu Fuzhou Sanming Taiyuan Xi'an Xianyang Lanzhou Yinchuan
Urumgqi Shenyang

NOTES: We define key regions as the 47 prefectures that are closely monitored by the Ministry of Environmental Protection in terms of pollution. These 47 prefectures
account for 14% of total land area, 48% of the total population, 71% of the economic size in China, and consume 52% of coal, produce 48% of SO,, 51% NOy, 42% particulate

matter, and approximately 50% VOC (Rohde and Muller, 2015).

Table A7

Cost-benefit Analysis.
Cost (billion yuan value per year) Value
CEMS fixed cost 6
CEMS operating cost 16
Total cost 22
Health savings
Morbidity 8.5
Mortality 20.7
Total health savings 29.2

NOTES: The fixed cost and operating cost of full adoption of CEMS systems in China
are obtained from the 2018 Environmental Monitoring Market Forecast (https://
www.zghbcy.com/templ/news_xxym.html?articleld = 1330&categoryld = 16). The
estimated mortality and morbidity savings of lower PM, 5 concentration level are
from Barwick et al. (2018), who find that 10 ug/m? reduction in PM,_ s would lead to
144.5 and 59.6 billion yuan of mortality and morbidity savings, respectively. In the
back-of-the-envelope calculation, we adjust the value of health savings according to
the average treatment effect of disguised pollution on PM, s concentration 2.6%)
together with the average PM,s levels (around 55 ug/m? in 2017) in China.
Therefore, the estimated morbidity cost is (0.026*55)/10*59.6 = 8.5 billion yuan,
and the estimated mortality cost is (0.026%55)/107144.5 = 20.7 billion yuan.
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